MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 31: Parametric Equations, Arclength, Surface Area

Arclength, continued

Example 1. Consider this parametric equation:

$$
\begin{gathered}
x=t^{2} \quad y=t^{3} \quad \text { for } 0 \leq t \leq 1 \\
x^{3}=\left(t^{2}\right)^{3}=t^{6} ; \quad y^{2}=\left(t^{3}\right)^{2}=t^{6} \quad \Longrightarrow x^{3}=y^{2} \Longrightarrow y=x^{2 / 3} \quad 0 \leq x \leq 1
\end{gathered}
$$

Figure 1: Infinitesimal Arclength.

$$
\begin{gathered}
(d s)^{2}=(d x)^{2}+(d y)^{2} \\
(d s)^{2}=\underbrace{(2 t d t)^{2}}_{(d x)^{2}}+\underbrace{\left(3 t^{2} d t\right)^{2}}_{(d y)^{2}}=\left(4 t^{2}+9 t^{4}\right)(d t)^{2} \\
\text { Length }=\int_{t=0}^{t=1} d s=\int_{0}^{1} \sqrt{4 t^{2}+9 t^{4}} d t=\int_{0}^{1} t \sqrt{4+9 t^{2}} d t \\
=\left.\frac{\left(4+9 t^{2}\right)^{3 / 2}}{27}\right|_{0} ^{1}=\frac{1}{27}\left(13^{3 / 2}-4^{3 / 2}\right)
\end{gathered}
$$

Even if you can't evaluate the integral analytically, you can always use numerical methods.

Surface Area (surfaces of revolution)

Figure 2: Calculating surface area
$d s$ (the infinitesimal curve length in Figure 23) is revolved a distance $2 \pi y$. The surface area of the thin strip of width $d s$ is $2 \pi y d s$.

Example 2. Revolve Example $1\left(x=t^{2}, y=t^{3}, 0 \leq t \leq 1\right)$ around the x -axis. Refer to Figure 3 .

Figure 3: Curved surface of a trumpet.

$$
\text { Area }=\int 2 \pi y d s=\int_{0}^{1} 2 \pi \underbrace{t^{3}}_{y} \underbrace{t \sqrt{4+9 t^{2}} d t}_{d s}=2 \pi \int_{0}^{1} t^{4} \sqrt{4+9 t^{2}} d t
$$

Now, we discuss the method used to evaluate

$$
\int t^{4}\left(4+9 t^{2}\right)^{1 / 2} d t
$$

We're going to ignore the factor of 2π. You can reinsert it once you're done evaluating the integral. We use the trigonometric substitution

$$
t=\frac{2}{3} \tan u ; \quad d t=\frac{2}{3} \sec ^{2} u d u ; \quad \tan ^{2} u+1=\sec ^{2} u
$$

Putting all of this together gives us:

$$
\begin{aligned}
\int t^{4}\left(4+9 t^{2}\right)^{1 / 2} d t & =\int\left(\frac{2}{3} \tan u\right)^{4}\left(4+9\left(\frac{4}{9} \tan ^{2} u\right)\right)^{1 / 2}\left(\frac{2}{3} \sec ^{2} u d u\right) \\
& =\left(\frac{2}{3}\right)^{5} \int \tan ^{4} u(2 \sec u)\left(\sec ^{2} u d u\right)
\end{aligned}
$$

This is a tan - sec integral. It's doable, but it will take a long time for you to work the whole thing out. We're going to stop evaluating it here.

Example 3 Let's use what we've learned to find the surface area of the unit sphere (see Figure (4).

Figure 4: Slice of spherical surface (orange peel, only, not the insides).

For the top half of the sphere,

$$
y=\sqrt{1-x^{2}}
$$

We want to find the area of the spherical slice between $x=a$ and $x=b$. A spherical slice has area

$$
A=\int_{x=a}^{x=b} 2 \pi y d s
$$

From last time,

$$
d s=\frac{d x}{\sqrt{1-x^{2}}}
$$

Plugging that in yields a remarkably simple formula for A :

$$
\begin{gathered}
A=\int_{a}^{b} 2 \pi \sqrt{1-x^{2}} \frac{d x}{\sqrt{1-x^{2}}}=\int_{a}^{b} 2 \pi d x \\
=2 \pi(b-a)
\end{gathered}
$$

Special Cases

For a whole sphere, $a=-1$, and $b=1$.

$$
2 \pi(1-(-1))=4 \pi
$$

is the surface area of a unit sphere.
For a half sphere, $a=0$ and $b=1$.

$$
2 \pi(1-0)=2 \pi
$$

