MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 32: Polar Co-ordinates, Area in Polar Co-ordinates

Polar Coordinates

Figure 1: Polar Co-ordinates.

In polar coordinates, we specify an object's position in terms of its distance r from the origin and the angle θ that the ray from the origin to the point makes with respect to the x-axis.

Example 1. What are the polar coordinates for the point specified by $(1,-1)$ in rectangular coordinates?

Figure 2: Rectangular Co-ordinates to Polar Co-ordinates.

$$
\begin{aligned}
r & =\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\theta & =-\frac{\pi}{4}
\end{aligned}
$$

In most cases, we use the convention that $r \geq 0$ and $0 \leq \theta \leq 2 \pi$. But another common convention is to say $r \geq 0$ and $-\pi \leq \theta \leq \pi$. All values of θ and even negative values of r can be used.

Figure 3: Rectangular Co-ordinates to Polar Co-ordinates.

Regardless of whether we allow positive or negative values of r or θ, what is always true is:

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

For instance, $x=1, y=-1$ can be represented by $r=-\sqrt{2}, \theta=\frac{3 \pi}{4}$:

$$
1=x=-\sqrt{2} \cos \frac{3 \pi}{4} \quad \text { and } \quad-1=y=-\sqrt{2} \sin \frac{3 \pi}{4}
$$

Example 2. Consider a circle of radius a with its center at $x=a, y=0$. We want to find an equation that relates r to θ.

Figure 4: Circle of radius a with center at $x=a, y=0$.

We know the equation for the circle in rectangular coordinates is

$$
(x-a)^{2}+y^{2}=a^{2}
$$

Start by plugging in:

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

This gives us

$$
\begin{gathered}
(r \cos \theta-a)^{2}+(r \sin \theta)^{2}=a^{2} \\
r^{2} \cos ^{2} \theta-2 a r \cos \theta+a^{2}+r^{2} \sin ^{2} \theta=a^{2} \\
r^{2}-2 a r \cos \theta=0 \\
r=2 a \cos \theta
\end{gathered}
$$

The range of $0 \leq \theta \leq \frac{\pi}{2}$ traces out the top half of the circle, while $-\frac{\pi}{2} \leq \theta \leq 0$ traces out the bottom half. Let's graph this.

Figure 5: $r=2 a \cos \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2$.

$$
\begin{aligned}
& \text { At } \theta=0, r=2 a \Longrightarrow x=2 a, y=0 \\
& \text { At } \theta=\frac{\pi}{4}, r=2 a \cos \frac{\pi}{4}=a \sqrt{2}
\end{aligned}
$$

The main issue is finding the range of θ tracing the circle once. In this case, $\frac{-\pi}{2}<\theta<\frac{\pi}{2}$.

$$
\begin{aligned}
\theta & =-\frac{\pi}{2}(\text { down }) \\
\theta & =\frac{\pi}{2} \quad(\text { up })
\end{aligned}
$$

Weird range (avoid this one): $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$. When $\theta=\pi, r=2 a \cos \pi=2 a(-1)=-2 a$. The radius points "backwards". In the range $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$, the same circle is traced out a second time.

Figure 6: Using polar co-ordinates to find area of a generic function.

Area in Polar Coordinates

Since radius is a function of angle $(r=f(\theta))$, we will integrate with respect to θ. The question is: what, exactly, should we integrate?

$$
\int_{\theta_{1}}^{\theta_{2}} ? ? d \theta
$$

Let's look at a very small slice of this region:

Figure 7: Approximate slice of area in polar coordinates.
This infinitesimal slice is approximately a right triangle. To find its area, we take:

$$
\text { Area of slice } \approx \frac{1}{2}(\text { base })(\text { height })=\frac{1}{2} r(r d \theta)
$$

So,

$$
\text { Total Area }=\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} r^{2} d \theta
$$

Example 3. $r=2 a \cos \theta$, and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ (the circle in Figure 5.

$$
A=\text { area }=\int_{-\pi / 2}^{\pi / 2} \frac{1}{2}(2 a \cos \theta)^{2} d \theta=2 a^{2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta
$$

Because $\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta$, we can rewrite this as

$$
\begin{gathered}
A=\text { area }=\int_{-\pi / 2}^{\pi / 2}(1+\cos 2 \theta) d \theta=a^{2} \int_{-\pi / 2}^{\pi / 2} d \theta+a^{2} \int_{-\pi / 2}^{\pi / 2} \cos 2 \theta d \theta \\
=\pi a^{2}+\left.\frac{1}{2} \sin 2 \theta\right|_{-\pi / 2} ^{\pi / 2}=\pi a^{2}+\frac{1}{2}[\sin \pi=\sin (-\pi)] \\
A=\text { area }=\pi a^{2}
\end{gathered}
$$

Example 4: Circle centered at the Origin.

Figure 8: Example 4: Circle centered at the origin

$$
\begin{aligned}
x & =r \cos \theta ; y=r \sin \theta \\
x^{2}+y^{2} & =r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2}
\end{aligned}
$$

The circle is $x^{2}+y^{2}=a^{2}$, so $r=a$ and

$$
\begin{gathered}
x=a \cos \theta ; y=a \sin \theta \\
A=\int_{0}^{2 \pi} \frac{1}{2} a^{2} d \theta=\frac{1}{2} a^{2} \cdot 2 \pi=\pi a^{2}
\end{gathered}
$$

Example 5: A Ray. In this case, $\theta=b$.

Figure 9: Example 5: The ray $\theta=b, 0 \leq r<\infty$.

The range of r is $0 \leq r<\infty ; \quad x=r \cos b ; \quad y=r \sin b$.

Example 6: Finding the Polar Formula, based on the Cartesian Formula

Figure 10: Example 6: Cartesian Form to Polar Form

Consider, in cartesian coordinates, the line $y=1$. To find the polar coordinate equation, plug in $y=r \sin \theta$ and $x=r \cos \theta$ and solve for r.

$$
r \sin \theta=1 \Longrightarrow r=\frac{1}{\sin \theta} \quad \text { with } \quad 0<\theta<\pi
$$

Example 7: Going back to (x, y) coordinates from $r=f(\theta)$.
Start with

$$
r=\frac{1}{1+\frac{1}{2} \sin \theta}
$$

Hence,

$$
r+\frac{r}{2} \sin \theta=1
$$

Plug in $r=\sqrt{x^{2}+y^{2}}$:

$$
\begin{gathered}
\sqrt{x^{2}+y^{2}}+\frac{y}{2}=1 \\
\sqrt{x^{2}+y^{2}}=1-\frac{y}{2} \quad \Longrightarrow \quad x^{2}+y^{2}=\left(1-\frac{y}{2}\right)^{2}=1-y+\frac{y^{2}}{4}
\end{gathered}
$$

Finally,

$$
x^{2}+\frac{3 y^{2}}{4}+y=1
$$

This is an equation for an ellipse, with the origin at one focus.
Useful conversion formulas:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Example 8: A Rose $r=\cos (2 \theta)$
The graph looks a bit like a flower:

Figure 11: Example 8: Rose
For the first "petal"

$$
-\frac{\pi}{4}<\theta<\frac{\pi}{4}
$$

Note: Next lecture is Lecture 34 as Lecture 33 is Exam 4.

