EXAM 1

(1) (10 points) Find $\int_{-2}^{3} 2x^2 [|x|] dx$. (Here, as usual, [x] denotes the largest integer $\leq x$.)

(2) (10 points) Let f be an integrable function on [a, b] and a < d < b. Further suppose that

$$\int_{a+d}^{b+d} f(x-d)dx = 4, \qquad \int_{-a}^{-d} f(-x)dx = 7.$$
$$\int_{d}^{b} 2f(x)dx.$$

Find

EXAM 1

(3) (10 points) Suppose A, B are inductive sets. Prove $A \cap B$ is an inductive set. Give an example of inductive sets A, B such that A - B is not an inductive set.

(4) (15 points) Let f be a bounded, integrable function on [0,1]. Suppose there exists $C \in \mathbb{R}$ such that $f(x) \ge C > 0$ for all $x \in [0,1]$. Prove that g(x) = 1/f(x) is integrable on [0,1].

 2

EXAM 1

(5) (15 points) Suppose f is defined for all $x \in (-1, 1)$ and that $\lim_{x\to 0} f(x) = A$. Show there exists a constant c < 1 such that f(x) is bounded for all $x \in (-c, c)$.

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.