EXAM 1

(1) (10 points) Find $\int_{-2}^{3} 2 x^{2}[|x|] d x$. (Here, as usual, $[x]$ denotes the largest integer $\leq x$.)
(2) (10 points) Let f be an integrable function on $[a, b]$ and $a<d<b$. Further suppose that

$$
\int_{a+d}^{b+d} f(x-d) d x=4, \quad \int_{-a}^{-d} f(-x) d x=7
$$

Find

$$
\int_{d}^{b} 2 f(x) d x
$$

(3) (10 points) Suppose A, B are inductive sets. Prove $A \cap B$ is an inductive set. Give an example of inductive sets A, B such that $A-B$ is not an inductive set.
(4) (15 points) Let f be a bounded, integrable function on $[0,1]$. Suppose there exists $C \in \mathbb{R}$ such that $f(x) \geq C>0$ for all $x \in[0,1]$. Prove that $g(x)=1 / f(x)$ is integrable on $[0,1]$.
(5) (15 points) Suppose f is defined for all $x \in(-1,1)$ and that $\lim _{x \rightarrow 0} f(x)=$ A. Show there exists a constant $c<1$ such that $f(x)$ is bounded for all $x \in(-c, c)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

