Exam 1 - Solutions

October 1, 2010

Problem 1: Find $\int_{-2}^{3} 2 x^{2}[|x|] d x$. (Here, as usual, $[x]$ denotes the largest integer $\leq x$.)

Solution Note that

$$
2 x^{2}\lfloor|x|\rfloor=\left\{\begin{array}{c}
2 x^{2} \text { for }-2<x \leq-1 \\
0 \text { for }-1<x<1 \\
2 x^{2} \text { for } 1 \leq x<2 \\
4 x^{2} \text { for } 2 \leq x<3
\end{array}\right\}
$$

Hence,

$$
\begin{gathered}
\int_{-2}^{3} 2 x^{2}\lfloor|x|\rfloor d x=\int_{-2}^{-1} 2 x^{2} d x+\int_{1}^{2} 2 x^{2} d x+\int_{2}^{3} 4 x^{2} d x \\
=\left.\frac{2}{3} x^{3}\right|_{-2} ^{-1}+\left.\frac{2}{3} x^{3}\right|_{1} ^{2}+\left.\frac{4}{3} x^{3}\right|_{2} ^{3} \\
=-\frac{2}{3}+\frac{16}{3}+\frac{16}{3}-\frac{2}{3}+\frac{108}{3}-\frac{32}{3}=\frac{104}{3}
\end{gathered}
$$

Problem 2: Let f be an integrable function on $[a, b]$ and $a<d<b$. Further suppose that

$$
\int_{a+d}^{b+d} f(x-d) d x=4, \quad \int_{-a}^{-d} f(-x) d x=7
$$

Find

$$
\int_{d}^{b} 2 f(x) d x
$$

Solution Properties of the integral imply

$$
\int_{a}^{b} f(x) d x=4, \quad \int_{a}^{d} f(x)=-7
$$

As $4=\int_{a}^{b} f(x) d x=\int_{a}^{d} f(x) d x+\int_{d}^{b} f(x) d x=-7+\int_{d}^{b} f(x) d x$, we see that $\int_{d}^{b} f(x) d x=11$. Again, using properties of the integral, $\int_{d}^{b} 2 f(x) d x=$ $2 \int_{d}^{b} f(x) d x=22$.

Problem 3: Suppose A, B are inductive sets. Prove $A \cap B$ is an inductive set. Give an example of inductive sets A, B such that $A-B$ is not an inductive set.

Solution If A and B are inductive sets, then $1 \in A, B$; thus, $1 \in A \cap B$. Moreover, suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$; hence, $x+1 \in A$ and $x+1 \in B$ because A and B are inductive sets. But, then $x+1 \in A \cap B$. Therefore, $A \cap B$ is an inductive set.

Let $A=B=\mathbb{R}$. Then A and B are inductive sets because $1 \in \mathbb{R}$ and because $x \in \mathbb{R}$ implies $x+1 \in \mathbb{R}$ by closure of addition for the real numbers. However, $A-B=\emptyset$ is not an inductive set since $1 \notin \emptyset$.

Problem 4: Let f be a bounded, integrable function on $[0,1]$. Suppose there exists $C \in \mathbb{R}$ such that $f(x) \geq C>0$ for all $x \in[0,1]$. Prove that $g(x)=1 / f(x)$ is integrable on $[0,1]$.

Solution Let $\epsilon>0$ and observe that as f is integrable and $f \geq C$, there exist step functions $s(x), t(x)$ such that $C / 2 \leq s(x) \leq f(x) \leq t(x)$ and $\int_{0}^{1}(t(x)-s(x)) d x<\epsilon \cdot C^{2} / 4$. Let $s_{1}(x)=1 / t(x), t_{1}(x)=1 / s(x)$. Then, $0<s_{1}(x) \leq g(x) \leq t_{1}(x)$ (we proved that in class on the first day). Moreover,

$$
\int_{0}^{1}\left(t_{1}(x)-s_{1}(x)\right) d x=\int_{0}^{1} \frac{1}{s(x)}-\frac{1}{t(x)} d x=\int_{0}^{1} \frac{t(x)-s(x)}{s(x) t(x)} d x
$$

By choice, we have that $s(x), t(x) \geq C / 2$. Thus, $s(x) t(x) \geq C^{2} / 4$ and $1 /(s(x) t(x)) \leq 4 / C^{2}$. It follows that

$$
\int_{0}^{1} t_{1}(x)-s_{1}(x) d x \leq 4 / C^{2} \int_{0}^{1}(t(x)-s(x)) d x<4 / C^{2} \epsilon \cdot C^{2} / 4=\epsilon
$$

Here the first inequality comes from the comparison principle for integrals of step functions and the second follows by hypothesis. Thus, by the Riemann condition, $g=1 / f$ is integrable.

Problem 5: Suppose f is defined for all $x \in(-1,1)$ and that $\lim _{x \rightarrow 0} f(x)=$ A. Show there exists a constant $c<1$ such that $f(x)$ is bounded for all $x \in(-c, c)$.

Solution First, denote $f(0)=B$. Let $M=\max \{|B|,|A|+1\}$. Since $\lim _{x \rightarrow 0} f(x)=A$, there exists $\delta>0$ such that $|f(x)-A|<1$ if $0<|x|<\delta$. Thus, for all $0<|x|<\delta$,

$$
|f(x)|=|f(x)-A+A| \leq|f(x)-A|+|A|<1+|A| .
$$

Now, set $c=\delta$. Then, for all $x \in(-c, c),|f(x)| \leq M$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

