EXAM 2-OCTOBER 29, 2010

(1) (5 points each) Find the derivative of each of the following functions

- $g(x)=\log \left(\cos \left(x^{2}\right)\right)$
- $h(x)=e^{\sqrt{x} \sin x}$
(2) (10 points) Consider the function

$$
g(x)=\frac{\log x}{x^{2}}
$$

Determine the behavior of g in a neighborhood of $x=1$. Specifically, is the function increasing or decreasing? Is it convex or concave? Justify your answers.
(3) (10 points) Consider the functions $f(x)=x \sin x$ and $g(x)=(x+5) \cos x$. Prove there exists $c \in(0, \pi / 2)$ such that $f(c)=g(c)$. (If you are using a theorem, make sure you explain why the function or functions you are considering satisfy the hypotheses of the theorem.)
(4) (15 points) Define $f(x)$ such that $f(x)=x$ for every rational value of x and $f(x)=-x$ for every irrational x.
(a) Prove $f(x)$ is continuous at $x=0$.
(b) Set $a \neq 0$. Prove that $f(x)$ is not continuous at $x=a$.
(5) (15 points) Let f be continuous. Prove that

$$
\int_{0}^{x} f(t)(x-t) d t=\int_{0}^{x}\left(\int_{0}^{t} f(u) d u\right) d t
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

