Exam 2 Solutions

October 29, 2010
Total: 60 points
Problem 1: Find the derivative of each of the following functions

- $g(x)=\log \left(\cos \left(x^{2}\right)\right)$
- $h(x)=e^{\sqrt{x} \sin x}$

Solution For the first problem, we invoke the chain rule twice. Thus,

$$
\frac{d}{d x}\left(\log \left(\cos \left(x^{2}\right)\right)\right)=\frac{1}{\cos \left(x^{2}\right)} \cdot\left(-\sin \left(x^{2}\right)\right) \cdot 2 x=-2 x \tan \left(x^{2}\right)
$$

The second problem requires the chain rule and the product rule. We immediately get,

$$
\frac{d}{d x}\left(e^{\sqrt{x} \sin x}\right)=e^{\sqrt{x} \sin x}\left(\frac{1}{2 \sqrt{x}} \sin x+\sqrt{x} \cos x\right)
$$

Problem 2: Consider the function

$$
g(x)=\frac{\log x}{x^{2}}
$$

Determine the behavior of g in a neighborhood of $x=1$. Specifically, is the function increasing or decreasing? Is it convex or concave? Justify your answers.

Solution We determined $\frac{d}{d x} \log x=\frac{1}{x}$ for $x>0$ and $\frac{d}{d x} x^{2}=2 x \neq 0$ for $x>0$. Thus, we can use the quotient rule to determine $g^{\prime}(x), g^{\prime \prime}(x)$ away from $x=0$. A quick calculation yields

$$
g^{\prime}(x)=\frac{1-2 \log x}{x^{3}}
$$

and

$$
g^{\prime \prime}(x)=\frac{-5+6 \log x}{x^{4}}
$$

As $\log 1=0, g^{\prime}(1)=1>0, g^{\prime \prime}(1)=-5<0$. Further, observe that $g^{\prime}(x), g^{\prime \prime}(x)$ are both continuous functions for all $x>0$. Thus, by the sign preservation of continuous functions, in a neighborhood of $x=1$ we know $g^{\prime}(x)>0, g^{\prime \prime}(x)<0$. By the Mean Value Theorem, $g^{\prime}>0$ implies that g is increasing in a neighborhood of $x=1$. By the second derivative test, $g^{\prime \prime}<0$ implies g is concave in a neighborhood of $x=1$.

Problem 3: Consider the functions $f(x)=x \sin x$ and $g(x)=(x+5) \cos x$. Prove there exists $c \in(0, \pi / 2)$ such that $f(c)=g(c)$. (If you are using a theorem, make sure you explain why the function or functions you are considering satisfy the hypotheses of the theorem.)

Solution Set $h(x)=x \sin x-(x+5) \cos x$. Notice that $x, x+5, \sin x, \cos x$ are all continuous functions on $[0, \pi / 2]$, so the products and sums are also continuous. That is, $h(x)$ is continuous on $[0, \pi / 2]$. Further, observe $h(0)=$ -5 and $h(\pi / 2)=\pi / 2$. As $-5<0<\pi / 2$, the intermediate value theorem guarantees the existence of $c \in(0, \pi / 2)$ such that $h(c)=0$. As $h(c)=$ $f(c)-g(c)$, it follows that $f(c)=g(c)$.

Problem 4: Define $f(x)$ such that $f(x)=x$ for every rational value of x and $f(x)=-x$ for every irrational x.
(a) Prove $f(x)$ is continuous at $x=0$.
(b) Set $a \neq 0$. Prove that $f(x)$ is not continuous at $x=a$.

Solution (a) First, observe that $f(0)=0$ as 0 is rational. Now, let $\epsilon>0$ and choose $\delta=\epsilon$. If $|x-0|=|x|<\delta$ then $|f(x)-f(0)|=|f(x)|=|x|<\delta=\epsilon$. Therefore, $f(x)$ is continuous at $x=0$.
Alternative solution: Observe that $-|x| \leq f(x) \leq|x|$. As $\lim _{x \rightarrow 0} \pm|x|=0$, it follows that $\lim _{x \rightarrow 0} f(x)=0=f(0)$ by the squeeze theorem.
(b) Set $\epsilon=|a|$. We show that for any $\delta>0$ there exists $x \in(a-\delta, a+\delta)$ such that $|f(x)-f(a)|>\epsilon$.

To that end, consider an arbitrary $\delta>0$. Choose $\delta_{1}<\min \{\delta,|a| / 2\}$. Then any $x \in\left(a-\delta_{1}, a+\delta_{1}\right)$ has the same sign as a. Now, suppose $a \in$ \mathbb{Q}. Then by the density of the irrationals, there exists $x \notin \mathbb{Q}$ such that $x \in\left(a-\delta_{1}, a+\delta_{1}\right) \subset(a-\delta, a+\delta)$. Further, $|f(a)-f(x)|=|a-(-x)|=$ $|a+x|=|a|+|x|>\epsilon$. The last equality comes as a, x have the same sign
and the inequality follows by our choice of ϵ. Thus, f is not continuous for all $a \neq 0$ such that a is rational.

An analogous proof works when $a \notin \mathbb{Q}$ by the density of the rationals. It follows that f is not continuous for all $x \neq 0$.

Problem 5: Let f be continuous. Prove that

$$
\int_{0}^{x} f(t)(x-t) d t=\int_{0}^{x}\left(\int_{0}^{t} f(u) d u\right) d t
$$

Solution Define the function $g(x)=\int_{0}^{x} f(t)(x-t) d t-\int_{0}^{x}\left(\int_{0}^{t} f(u) d u\right) d t$. By the Fundamental Theorem of Calculus,

$$
\frac{d}{d x}\left(\int_{0}^{x} t f(t) d t\right)=x f(x), \frac{d}{d x}\left(\int_{0}^{x} \int_{0}^{t} f(u) d u d t\right)=\int_{0}^{x} f(u) d u
$$

Notice here we needed both that f and the indefinite integral of f are continuous functions. Now,

$$
g^{\prime}(x)=\int_{0}^{x} f(t) d t+x f(x)-x f(x)-\int_{0}^{x} f(u) d u=0
$$

So by the Mean Value Theorem, g is a constant. Further, observe that

$$
g(0)=\int_{0}^{0} f(t)(x-t) d t-\int_{0}^{0} \int_{0}^{t} f(u) d u d t=0-0=0 .
$$

Thus, $g(x)=0$ for all x. It follows that $\int_{0}^{x} f(t)(x-t) d t=\int_{0}^{x}\left(\int_{0}^{t} f(u) d u\right) d t$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

