EXAM 3 - NOVEMBER 19, 2010

(1) (10 points) Evaluate

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\log(x+1)} \right)$$

(2) (10 points) Evaluate

$$\int \frac{3x-2}{x^2-6x+10} dx$$

(3) (10 points) Let f be an infinitely differentiable function on \mathbb{R} . We say f is analytic on (-1,1) if the sequence $\{T_n f(x)\}$ converges to f(x) for all $x \in (-1,1)$, where $T_n f(x)$ is the *n*th Taylor polynomial of f centered at zero. Suppose there exists a constant $0 < C \leq 1$ such that

$$\left|f^{(k)}(x)\right| \le C^k k!$$

for every positive integer k and every real number $x \in (-1, 1)$. Prove that f is analytic on (-1, 1).

(4) (10 points) Let f(x) be a function defined on $(0, \pi]$. Suppose $\lim_{n\to\infty} f(1/n) = 0$ and $\lim_{n\to\infty} f(\pi/n) = 1$. Prove that $\lim_{x\to 0^+} f(x)$ does not exist.

(5) A function f on \mathbb{R} is compactly supported if there exists a constant B > 0 such that f(x) = 0 if $|x| \ge B$. If f and g are two differentiable, compactly supported functions on \mathbb{R} , then we define

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy.$$

Note: We define $\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-t}^{0} f(x) dx + \lim_{t \to \infty} \int_{0}^{t} f(x) dx$.

• (10 points) Prove (f * g)(x) = (g * f)(x).

• (10 points) Prove (f' * g)(x) = (g' * f)(x).

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.