EXAM 3-NOVEMBER 19, 2010
(1) (10 points) Evaluate

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\log (x+1)}\right)
$$

(2) (10 points) Evaluate

$$
\int \frac{3 x-2}{x^{2}-6 x+10} d x
$$

(3) (10 points) Let f be an infinitely differentiable function on \mathbb{R}. We say f is analytic on $(-1,1)$ if the sequence $\left\{T_{n} f(x)\right\}$ converges to $f(x)$ for all $x \in(-1,1)$, where $T_{n} f(x)$ is the nth Taylor polynomial of f centered at zero. Suppose there exists a constant $0<C \leq 1$ such that

$$
\left|f^{(k)}(x)\right| \leq C^{k} k!
$$

for every positive integer k and every real number $x \in(-1,1)$. Prove that f is analytic on $(-1,1)$.
(4) (10 points) Let $f(x)$ be a function defined on ($0, \pi]$. Suppose $\lim _{n \rightarrow \infty} f(1 / n)=$ 0 and $\lim _{n \rightarrow \infty} f(\pi / n)=1$. Prove that $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist.
(5) A function f on \mathbb{R} is compactly supported if there exists a constant $B>0$ such that $f(x)=0$ if $|x| \geq B$. If f and g are two differentiable, compactly supported functions on \mathbb{R}, then we define

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Note: We define $\int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{-t}^{0} f(x) d x+\lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x$.

- (10 points) Prove $(f * g)(x)=(g * f)(x)$.
- (10 points) Prove $\left(f^{\prime} * g\right)(x)=\left(g^{\prime} * f\right)(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

