Exam 3 Solutions

Problem 1. Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\log (x+1)}\right)$.
Solution We begin by writing the problem as a single fraction, $\lim _{x \rightarrow 0}\left(\frac{\log (x+1)-x}{x \log (x+1)}\right)$. Observe that both numerator and denominator have limit zero, and thus we can apply L'Hopital's rule to see

$$
\lim _{x \rightarrow 0}\left(\frac{\log (x+1)-x}{x \log (x+1)}\right)=\lim _{x \rightarrow 0}\left(\frac{1 /(x+1)-1}{\log (x+1)+x /(x+1)}\right)=\lim _{x \rightarrow 0}\left(\frac{1-(x+1)}{(x+1) \log (x+1)+x}\right) .
$$

Note that in the expression on the right, the limits of both numerator and denominator are again zero. Thus a second application of L'Hopital's rule gives

$$
\lim _{x \rightarrow 0}\left(\frac{1-(x+1)}{(x+1) \log (x+1)+x}\right)=\lim x \rightarrow 0\left(\frac{-1}{\log (x+1)+(x+1) /(x+1)+1}\right)=-\frac{1}{2} .
$$

Problem 2. Evaluate $\int \frac{3 x-2}{x^{2}-6 x+10} d x$.
Solution We start by observing that the denominator can be written as $(x-3)^{2}+1$. That makes part of the problem easy:

$$
-2 \int \frac{d x}{(x-3)^{2}+1}=-2 \arctan (x-3) .
$$

For the other part of the problem, we make the substitution $x-3=u$. So $x=u+3$. And thus we integrate:

$$
3 \int \frac{u+3}{u^{2}+1} d u=3 \int \frac{u}{u^{2}+1} d u+3 \int \frac{3 d u}{u^{2}+1}=\frac{3}{2} \log \left(u^{2}+1\right)+9 \arctan u .
$$

Here the last equality comes from a simple substitution. After substituting $x-3=u$ and adding in our work above, we get

$$
\frac{3}{2} \log \left((x-3)^{2}+1\right)+7 \arctan (x-3)+C .
$$

Problem 3: Let f be an infinitely differentiable function on \mathbb{R}. We say f is analytic on $(-1,1)$ if the sequence $\left\{T_{n} f(x)\right\}$ converges to $f(x)$ for all $x \in(-1,1)$, where $T_{n} f(x)$ is the nth Taylor polynomial of f centered at zero. Suppose there exists a constant $0<C \leq 1$ such that

$$
\left|f^{(k)}(x)\right| \leq C^{k} k!
$$

for every positive integer k and every real number $x \in(-1,1)$. Prove that f is analytic on $(-1,1)$.

Solution Recall $f(x)=T_{n} f(x)+E_{n}(x)$ where $\left|E_{n}(x)\right| \leq \frac{|x|^{n} f^{(n)}(c)}{n!}$ for some c between 0 and x. Applying our bound on $f^{(n)}(c)$, we have

$$
\left|f(x)-T_{n} f(x)\right|=\left|E_{n}(x)\right| \leq|C x|^{n}
$$

It follows that $\lim _{n \rightarrow \infty}\left|f(x)-T_{n} f(x)\right| \leq \lim _{n \rightarrow \infty}|C x|^{n}$. Hence, as $|C x|<1$ for all $x \in(-1,1), \lim _{n \rightarrow \infty}|C x|^{n}=0$. We conclude that $E_{n} f(x) \rightarrow 0$ and thus $T_{n} f(x) \rightarrow f(x)$; that is, f is analytic.

Problem 4: Let $f(x)$ be a function defined on $(0, \pi]$. Suppose $\lim _{n \rightarrow \infty} f(1 / n)=0$ and $\lim _{n \rightarrow \infty} f(\pi / n)=1$. Prove that $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist.

Solution Since $\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=0$ and $\lim _{n \rightarrow \infty} f\left(\frac{\pi}{n}\right)=1$, there exist positive integers $N_{1}>0$ and $N_{2}>0$ such that $n_{1}>N_{1}$ implies $\left|f\left(\frac{1}{n}\right)\right|<1 / 4$ and $n_{2}>N_{2}$ implies $\left|f\left(\frac{\pi}{n}\right)-1\right|<1 / 4$. Put $N=\max \left\{N_{1}, N_{2}\right\}$. If $n>N$, then $f\left(\frac{1}{n}\right)<\frac{1}{4}, f\left(\frac{\pi}{n}\right)>\frac{3}{4}$, and $f\left(\frac{\pi}{n}\right)-f\left(\frac{1}{n}\right)>\frac{1}{2}$.
Now suppose $\lim _{x \rightarrow 0^{+}} f(x)$ exists and is equal to the finite number L. Then there exists δ such that whenever $0<x<\delta$, we have $|f(x)-L|<\frac{1}{4}$. Let $M>\max \left\{N, \frac{\pi}{\delta}\right\}$ be a positive integer. If $n>M$, then $0<\frac{1}{n}, \frac{\pi}{n}<\delta$ and

$$
\left|f\left(\frac{1}{n}\right)-f\left(\frac{\pi}{n}\right)\right| \leq\left|f\left(\frac{1}{n}\right)-L\right|+\left|f\left(\frac{\pi}{n}\right)-L\right|<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

But, since $n>M>N$, this contradicts the conclusion of the first paragraph $f\left(\frac{\pi}{n}\right)-f\left(\frac{1}{n}\right)>$ $\frac{1}{2}$. We conclude that $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist.

Problem 5: A function f on \mathbb{R} is compactly supported if there exists a constant $B>0$ such that $f(x)=0$ if $|x| \geq B$. If f and g are two differentiable, compactly supported functions on \mathbb{R}, then we define

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Note: We define $\int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x$.

- Prove $(f * g)(x)=(g * f)(x)$.
- Prove $\left(f^{\prime} * g\right)(x)=\left(g^{\prime} * f\right)(x)$.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: Solution To be done on Pset 11!!

