PRACTICE PROBLEMS FOR THE FINAL EXAM

- (1) Determine each limit, if it exists:
 - (a) $\lim_{x \to \infty} \frac{x \sin(1/x)}{\cos(\pi/2 + 1/x)}$
 - (b) $\lim_{x \to 0} \frac{e^x e^{-x}}{\sin(3x)}$

(c) $\lim_{x\to 0} \frac{x \sin(x^2)}{2\log(x^3+1)}$. (Hint: Use Taylor approximations rather than L'Hopital here. You'll save 20 minutes.)

- (2) Evaluate each integral or find an antiderivative:
 - (a) $\int x \sin x \cos x dx$
 - (b) $\int \frac{x+1}{(x^2+2x+2)^3} dx$
 - (c) $\int_{-1}^{1} x^{-1/5} dx$

 - (d) $\int \sin^3 x dx$

(e)
$$\int_0^\infty \frac{dx}{\sqrt{x}}$$

- (3) Determine whether the following series converge absolutely, converge conditionally, or diverge: (a) $\sum \frac{1}{(\log n)^5}$

 - (b) $\sum \frac{(n!)^2}{2n^2}$ (c) $\sum \frac{3^n}{n^n}$ (d) $\sum \frac{(-1)^n}{\log n}$

(e)
$$\sum \frac{(-1)^n 5n^2}{n^3 + 10}$$

- (4) Determine the radius of convergence for each of the following series:

 - (a) $\sum \frac{x^n n^n}{n!}$ (b) $\sum \frac{2^n x^n}{2n}$ (c) $\sum \frac{(n!)^2}{(2n)!} x^n$
- (5) Using power series already familiar to you from class, determine the power series each of the following functions. Also determine the radius of convergence.
 - (a) $f(x) = \frac{x}{(1+x)^2}$ (b) $g(x) = \cosh x = \frac{e^x + e^{-x}}{2}$
- (6) Compute the derivative of \sqrt{x} directly from the definition of the derivative.
- (7) Prove the following statement by induction: $(1+2+\dots+n)^2 = 1^3 + \dots n^3.$
- (8) Which of the following functions is integrable on the interval [-1, 1]? Justify why or why not.
 - (a) $f(x) = x^2$.
 - (b) Let q(x) = 1 if the decimal expansion of x contains a zero, and let g(x) = 0 if the decimal expansion of x does not contain a zero.
 - (c) Let $q(x) = x \sin(1/x)$ if $x \neq 0$, and let q(x) = 0 if x = 0.

- (9) The statement below is an incorrect statement of the Riemann condition:
 - A function f defined on [a, b] is integrable on [a, b]if and only if
 - there exists $\epsilon \in \mathbb{R}^+$ such that for all step functions s, t on [a, b] we have $\int_{a}^{b} (t-s) < \epsilon.$

Prove that the first statement does not imply the second. Then give the correct statement of the Riemann condition.

(10) Let f(x) be a continuous function with continuous first derivative such that f(0) = 0 and $0 \le f(x) \le e^{\alpha x}$ where $0 < \alpha < 1$. Prove that

$$\int_0^\infty f'(x)e^{-x}dx = \int_0^\infty f(x)e^{-x}dx.$$

- (11) Let $f(x) = \int_0^x \frac{t}{1+t} e^{-t} dt$. Prove that $\lim_{x\to\infty} f(x)$ exists and is bounded above by 1.
- (12) Let $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$, where f is an integrable function defined on [0,1]. Prove $\int_0^1 |f(x)| dx \le ||f||_{\infty}$.
- (13) Prove $|\int f| \leq \int |f|$ for f integrable.
- (14) A set $A \subset \mathbb{R}$ is called *open* if for each $x \in A$ there exists some $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset A$. Let f be a continuous function on \mathbb{R} . Prove $S = \{x | f(x) > 0\}$ is open.
- (15) Suppose f is a differentiable function on (0, 1) and f' is bounded on (0, 1). Prove f is bounded on (0, 1).
- (16) We know $\lim_{n\to\infty} x^n = f(x)$ on [0,1] where f(x) = 0 for $x \in [0,1)$ and f(1) = 1. Prove the convergence is NOT uniform. (Do not use the fact that the limit is discontinuous.)
- (17) Given a sequence $\{a_n\}$ consider a sequence of positive integers $\{n_k\}$ such that $n_1 < n_2 < \cdots$. We call $\{a_{n_k}\}$ a subsequence of $\{a_n\}$. Suppose $\{a_{n_k}\}$ and $\{a_{n_l}\}\$ are two different subsequences of $\{a_n\}\$ such that $\lim_{k\to\infty}a_{n_k}\neq$ $\lim_{l\to\infty} a_{n_l}$. Prove $\lim_{n\to\infty} a_n$ diverges.
- (18) Let $f_n(x) = \sin\left(\frac{x}{n}\right)$. For any fixed $R \in \mathbb{R}^+$, prove $f_n(x)$ converges uniformly to f(x) = 0 on [-R, R].
- (19) Suppose the series $\sum a_n x^n$ converges absolutely for x = -4. What can you
- say about the radius of convergence? Does the series $\sum n |a_n| 2^n$ converge? (20) Suppose the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. Prove $\sum_{n=1}^{\infty} (e^{a_n} 1)$ converges absolutely.
- (21) Assume $\sum a_n$ converges and $\{b_n\}$ is a bounded sequence. Prove $\sum a_n b_n$ converges.

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.