PRACTICE PROBLEMS FOR THE FINAL EXAM

(1) Determine each limit, if it exists:
(a) $\lim _{x \rightarrow \infty} \frac{x \sin (1 / x)}{\cos (\pi / 2+1 / x)}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin (3 x)}$
(c) $\lim _{x \rightarrow 0} \frac{x \sin \left(x^{2}\right)}{2 \log \left(x^{3}+1\right)}$. (Hint: Use Taylor approximations rather than L'Hopital here. You'll save 20 minutes.)
(2) Evaluate each integral or find an antiderivative:
(a) $\int x \sin x \cos x d x$
(b) $\int \frac{x+1}{\left(x^{2}+2 x+2\right)^{3}} d x$
(c) $\int_{-1}^{1} x^{-1 / 5} d x$
(d) $\int \sin ^{3} x d x$
(e) $\int_{0}^{\infty} \frac{d x}{\sqrt{x}}$
(3) Determine whether the following series converge absolutely, converge conditionally, or diverge:
(a) $\sum \frac{1}{(\log n)^{5}}$
(b) $\sum \frac{(n!)^{2}}{2^{n^{2}}}$
(c) $\sum \frac{3^{n}}{n^{n}}$
(d) $\sum \frac{(-1)^{n}}{\log n}$
(e) $\sum \frac{(-1)^{n} 5 n^{2}}{n^{3}+10}$
(4) Determine the radius of convergence for each of the following series:
(a) $\sum \frac{x^{n} n^{n}}{n!}$
(b) $\sum \frac{2^{n} x^{n}}{2 n}$
(c) $\sum \frac{(n!)^{2}}{(2 n)!} x^{n}$
(5) Using power series already familiar to you from class, determine the power series each of the following functions. Also determine the radius of convergence.
(a) $f(x)=\frac{x}{(1+x)^{2}}$
(b) $g(x)=\cosh x=\frac{e^{x}+e^{-x}}{2}$
(6) Compute the derivative of \sqrt{x} directly from the definition of the derivative.
(7) Prove the following statement by induction:
$(1+2+\cdots+n)^{2}=1^{3}+\cdots n^{3}$.
(8) Which of the following functions is integrable on the interval $[-1,1]$? Justify why or why not.
(a) $f(x)=x^{2}$.
(b) Let $g(x)=1$ if the decimal expansion of x contains a zero, and let $g(x)=0$ if the decimal expansion of x does not contain a zero.
(c) Let $g(x)=x \sin (1 / x)$ if $x \neq 0$, and let $g(x)=0$ if $x=0$.
(9) The statement below is an incorrect statement of the Riemann condition:

- A function f defined on $[a, b]$ is integrable on $[a, b]$ if and only if
- there exists $\epsilon \in \mathbb{R}^{+}$such that for all step functions s, t on $[a, b]$ we have $\int_{a}^{b}(t-s)<\epsilon$.
Prove that the first statement does not imply the second. Then give the correct statement of the Riemann condition.
(10) Let $f(x)$ be a continuous function with continuous first derivative such that $f(0)=0$ and $0 \leq f(x) \leq e^{\alpha x}$ where $0<\alpha<1$. Prove that

$$
\int_{0}^{\infty} f^{\prime}(x) e^{-x} d x=\int_{0}^{\infty} f(x) e^{-x} d x
$$

(11) Let $f(x)=\int_{0}^{x} \frac{t}{1+t} e^{-t} d t$. Prove that $\lim _{x \rightarrow \infty} f(x)$ exists and is bounded above by 1 .
(12) Let $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$, where f is an integrable function defined on $[0,1]$. Prove $\int_{0}^{1}|f(x)| d x \leq\|f\|_{\infty}$.
(13) Prove $\left|\int f\right| \leq \int|f|$ for f integrable.
(14) A set $A \subset \mathbb{R}$ is called open if for each $x \in A$ there exists some $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset A$. Let f be a continuous function on \mathbb{R}. Prove $S=\{x \mid f(x)>0\}$ is open.
(15) Suppose f is a differentiable function on $(0,1)$ and f^{\prime} is bounded on $(0,1)$. Prove f is bounded on $(0,1)$.
(16) We know $\lim _{n \rightarrow \infty} x^{n}=f(x)$ on $[0,1]$ where $f(x)=0$ for $x \in[0,1)$ and $f(1)=1$. Prove the convergence is NOT uniform. (Do not use the fact that the limit is discontinuous.)
(17) Given a sequence $\left\{a_{n}\right\}$ consider a sequence of positive integers $\left\{n_{k}\right\}$ such that $n_{1}<n_{2}<\cdots$. We call $\left\{a_{n_{k}}\right\}$ a subsequence of $\left\{a_{n}\right\}$. Suppose $\left\{a_{n_{k}}\right\}$ and $\left\{a_{n_{l}}\right\}$ are two different subsequences of $\left\{a_{n}\right\}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}} \neq$ $\lim _{l \rightarrow \infty} a_{n_{l}}$. Prove $\lim _{n \rightarrow \infty} a_{n}$ diverges.
(18) Let $f_{n}(x)=\sin \left(\frac{x}{n}\right)$. For any fixed $R \in \mathbb{R}^{+}$, prove $f_{n}(x)$ converges uniformly to $f(x)=0$ on $[-R, R]$.
(19) Suppose the series $\sum a_{n} x^{n}$ converges absolutely for $x=-4$. What can you say about the radius of convergence? Does the series $\sum n\left|a_{n}\right| 2^{n}$ converge?
(20) Suppose the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. Prove $\sum_{n=1}^{\infty}\left(e^{a_{n}}-1\right)$ converges absolutely.
(21) Assume $\sum a_{n}$ converges and $\left\{b_{n}\right\}$ is a bounded sequence. Prove $\sum a_{n} b_{n}$ converges.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

