Practice Exam 1 - Solutions

September 29, 2010

Problem 1: Compute $\int_{99}^{103}(2 x-198)^{2}[\sqrt{x-99}] d x$ where here $[x]$ is defined to be the largest integer $\leq x$.

Solution By the properties of the integral, we know that the above is equal to

$$
4 \int_{0}^{4}(x)^{2}[\sqrt{x}] d x
$$

Now, $[\sqrt{x}]$ takes the value 0 on $[0,1)$ and the value 1 on $[1,4)$ and the value 2 at $x=4$. Thus, we can rewrite the integral

$$
4 \int_{1}^{4} x^{2} d x+4 \int_{4}^{4} x^{2} d x=4 \frac{4^{3}}{3}-4 \frac{1^{3}}{3}=256 / 3-4 / 3=252 / 3=84
$$

Problem 2: Let S be a square pyramid with base area r^{2} and height h. Using Cavalieri's Theorem, determine the volume of the pyramid.

Solution Orient the square pyramid so that the base sits on the $x-y$ plane and the top vertex sits on the z axis. Let $a_{S}\left(h_{0}\right)$ denote the cross-sectional area of $S \cap\left\{z=h_{0}\right\}$, and note that this is a square that will be a function of r, h. To find the length of a side of the square at height h_{0}, we consider the line which contains the two points $(r, 0)$ and $(0, h)$. One form of the equation for this line is $y=\frac{-h}{r} x+h$. Notice that here x is the side length of the square at height y. Thus, for $y=h_{0}$ we get $x=\frac{r}{h}\left(h-h_{0}\right)$. That is, $a_{S}\left(h_{0}\right)=\frac{r^{2}}{h^{2}}\left(h-h_{0}\right)^{2}$ for $h_{0} \in[0, h]$ and $a_{S}\left(h_{0}\right)=0$ otherwise. So

$$
\begin{aligned}
v(S) & =\int_{0}^{h} \frac{r^{2}}{h^{2}}\left(h-h_{0}\right)^{2} d h_{0}=\frac{r^{2}}{h^{2}} \int_{0}^{h} h^{2}-2 h h_{0}+h_{0}^{2} d h_{0} \\
& =\frac{r^{2}}{h^{2}}\left(h^{2}(h-0)-2 h\left(h^{2} / 2\right)+h^{3} / 3\right)=r^{2} h / 3 .
\end{aligned}
$$

Problem 3: Let f be an integrable function on $[0,1]$. Prove that $|f|$ is integrable on $[0,1]$.

Solution Let $\epsilon>0$. The Riemann condition implies there exist step functions $s(x), t(x)$ on $[0,1]$ such that $s(x) \leq f(x) \leq t(x)$ and $\int_{0}^{1}(t(x)-s(x)) d x<$
ϵ. Let $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[0,1]$ such that $s(x), t(x)$ are both constant $\left(s_{k}, t_{k}\right.$ on the k-th) open subintervals of P. Denote $A \subset P$, such that $A=\left\{x \in[0,1] \mid s_{k}(x) \geq 0\right.$ or $\left.t_{k}(x) \leq 0\right\}$.

Choose $s_{1}(x)$ such that $s_{1}(x)=\min \{|s(x)|,|t(x)|\}$ for $x \in A$ and $s_{1}(x)=$ 0 for $x \in P-A$. Choose $t_{1}(x)=\max \{|s(x)|,|t(x)|\}$. Denote by $\left(s_{1}\right)_{k}$ the constant value taken by $s_{1}(x)$ on the k-th subinterval. Define $\left(t_{1}\right)_{k}$ similarly. It is straightforward to check, using properties of the absolute value, that $s_{1}(x) \leq|f(x)| \leq t_{1}(x)$ on $[0,1]$.
Now consider any open subinterval $\left(x_{k-1}, x_{k}\right)$. If $s_{k} \geq 0$ then $\left(t_{1}\right)_{k}-\left(s_{1}\right)_{k}=$ $t_{k}-s_{k}$ and if $t_{k} \leq 0$ then $\left(t_{1}\right)_{k}-\left(s_{1}\right)_{k}=-s_{k}-\left(-t_{k}\right)=t_{k}-s_{k}$. Finally, observe that if $s_{k}<0, t_{k}>0$ then $\left(t_{1}\right)_{k}-\left(s_{1}\right)_{k}=\max \left\{\left|t_{k}\right|,\left|s_{k}\right|\right\}<\left|t_{k}\right|+\left|s_{k}\right|=t_{k}-s_{k}$.

Thus,

$$
\begin{aligned}
& \int_{0}^{1} t_{1}(x)-s_{1}(x) d x=\sum_{k=1}^{n}\left(\left(t_{1}\right)_{k}-\left(s_{1}\right)_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \leq \sum_{k=1}^{n}\left(t_{k}-s_{k}\right)\left(x_{k}-x_{k-1}\right)=\int_{0}^{1} t(x)-s(x) d x<\epsilon
\end{aligned}
$$

It follows that $|f|$ is integrable.

Problem 4: The well ordering principle states that every non-empty subset of the natural numbers has a least element. Prove the well ordering principle implies the principle of mathematical induction. (Hint: Let $S \subset \mathbb{P}$ be a set such that $1 \in S$ and if $k \in S$ then $k+1 \in S$. Consider $T=\mathbb{P}-S$. Show that $T=\emptyset$.)

Solution Let $S \subset \mathbb{P}$ such that $1 \in S$ and if $k \in S$ then $k+1 \in S$. We wish to show $S=\mathbb{P}$. Suppose not. Then there exists a set $T=\mathbb{P}-S$, and by hypothesis T is non-empty. Moreover, as $T \subset \mathbb{P}$, the well ordering principle implies that T has a least element. Let m denote this least element. By Theorem 1 in Course Notes A, $m \geq 1$. Notice $1 \notin T$ as $1 \in S, 1 \in \mathbb{P}$, and thus $m>1$. As m is the least element of $T, m-1 \notin T$.

Claim: $m \in \mathbb{P}$ with $m>1$ implies $m-1 \in \mathbb{P}$.
Proof of claim: Suppose not. Then there exists an inductive set A such that $m-1 \notin A$. Consider the set $B=A-\{m\}$. We wish to prove B is inductive. Since $m \neq 1,1 \in B$. Now suppose $k \in B \subset A$. As A is inductive, $k+1 \in A$
and thus $k+1 \in B$ or $k+1=m$. In the first case, B is inductive. The second case implies $m-1=k \in B \subset A$. This contradicts the construction of A. Thus, if $m-1 \notin \mathbb{P}$, then there exists an inductive set B such that $m \notin B$. This contradicts the assumption that $m \in \mathbb{P}$. It follows that $m-1 \in \mathbb{P}$.

Now, back to the main proof. As $m-1 \notin T$ and $m-1 \in \mathbb{P}$ it follows that $m-1 \in S$. But by the properties of $S, m-1+1=m \in S$. This contradicts the fact that $m \in T$. It follows that T cannot have a least element. The well ordering principle then implies that $T=\emptyset$. That is $S=\mathbb{P}$.

Problem 5: Suppose $\lim _{x \rightarrow p^{+}} f(x)=\lim _{x \rightarrow p^{-}} f(x)=A$. Prove $\lim _{x \rightarrow p} f(x)=$ A

Solution Let $\epsilon>0$. By hypothesis, there exist δ_{1}, δ_{2} such that $p<x<p+\delta_{1}$ implies $|f(x)-A|<\epsilon$ and $p-\delta_{2}<x<p$ implies $|f(x)-A|<\epsilon$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $0<|x-p|<\delta$ implies $|f(x)-A|<\epsilon$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

