Practice Exam 1 - Solutions

September 29, 2010

Problem 1: Compute $\int_{99}^{103} (2x-198)^2 \left[\sqrt{x-99}\right] dx$ where here [x] is defined to be the largest integer $\leq x$.

Solution By the properties of the integral, we know that the above is equal to

$$4\int_0^4 (x)^2 \left[\sqrt{x}\right] dx.$$

Now, $[\sqrt{x}]$ takes the value 0 on [0, 1) and the value 1 on [1, 4) and the value 2 at x = 4. Thus, we can rewrite the integral

$$4\int_{1}^{4} x^{2}dx + 4\int_{4}^{4} x^{2}dx = 4\frac{4^{3}}{3} - 4\frac{1^{3}}{3} = 256/3 - 4/3 = 252/3 = 84.$$

Problem 2: Let S be a square pyramid with base area r^2 and height h. Using Cavalieri's Theorem, determine the volume of the pyramid.

Solution Orient the square pyramid so that the base sits on the x - y plane and the top vertex sits on the z axis. Let $a_S(h_0)$ denote the cross-sectional area of $S \cap \{z = h_0\}$, and note that this is a square that will be a function of r, h. To find the length of a side of the square at height h_0 , we consider the line which contains the two points (r, 0) and (0, h). One form of the equation for this line is $y = \frac{-h}{r}x + h$. Notice that here x is the side length of the square at height y. Thus, for $y = h_0$ we get $x = \frac{r}{h}(h - h_0)$. That is, $a_S(h_0) = \frac{r^2}{h^2}(h - h_0)^2$ for $h_0 \in [0, h]$ and $a_S(h_0) = 0$ otherwise. So

$$v(S) = \int_0^h \frac{r^2}{h^2} (h - h_0)^2 dh_0 = \frac{r^2}{h^2} \int_0^h h^2 - 2hh_0 + h_0^2 dh_0$$
$$= \frac{r^2}{h^2} (h^2(h - 0) - 2h(h^2/2) + h^3/3) = r^2h/3.$$

Problem 3: Let f be an integrable function on [0, 1]. Prove that |f| is integrable on [0, 1].

Solution Let $\epsilon > 0$. The Riemann condition implies there exist step functions s(x), t(x) on [0, 1] such that $s(x) \le f(x) \le t(x)$ and $\int_0^1 (t(x) - s(x)) dx < t(x) \le t(x)$

 ϵ . Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [0, 1] such that s(x), t(x) are both constant $(s_k, t_k \text{ on the } k\text{-th})$ open subintervals of P. Denote $A \subset P$, such that $A = \{x \in [0, 1] | s_k(x) \ge 0 \text{ or } t_k(x) \le 0\}$.

Choose $s_1(x)$ such that $s_1(x) = \min\{|s(x)|, |t(x)|\}$ for $x \in A$ and $s_1(x) = 0$ for $x \in P - A$. Choose $t_1(x) = \max\{|s(x)|, |t(x)|\}$. Denote by $(s_1)_k$ the constant value taken by $s_1(x)$ on the k-th subinterval. Define $(t_1)_k$ similarly. It is straightforward to check, using properties of the absolute value, that $s_1(x) \leq |f(x)| \leq t_1(x)$ on [0, 1].

Now consider any open subinterval (x_{k-1}, x_k) . If $s_k \ge 0$ then $(t_1)_k - (s_1)_k = t_k - s_k$ and if $t_k \le 0$ then $(t_1)_k - (s_1)_k = -s_k - (-t_k) = t_k - s_k$. Finally, observe that if $s_k < 0, t_k > 0$ then $(t_1)_k - (s_1)_k = \max\{|t_k|, |s_k|\} < |t_k| + |s_k| = t_k - s_k$. Thus,

$$\int_0^1 t_1(x) - s_1(x) dx = \sum_{k=1}^n ((t_1)_k - (s_1)_k) (x_k - x_{k-1})$$
$$\leq \sum_{k=1}^n (t_k - s_k) (x_k - x_{k-1}) = \int_0^1 t(x) - s(x) dx < \epsilon.$$

It follows that |f| is integrable.

Problem 4: The well ordering principle states that every non-empty subset of the natural numbers has a least element. Prove the well ordering principle implies the principle of mathematical induction. (Hint: Let $S \subset \mathbb{P}$ be a set such that $1 \in S$ and if $k \in S$ then $k + 1 \in S$. Consider $T = \mathbb{P} - S$. Show that $T = \emptyset$.)

Solution Let $S \subset \mathbb{P}$ such that $1 \in S$ and if $k \in S$ then $k + 1 \in S$. We wish to show $S = \mathbb{P}$. Suppose not. Then there exists a set $T = \mathbb{P} - S$, and by hypothesis T is non-empty. Moreover, as $T \subset \mathbb{P}$, the well ordering principle implies that T has a least element. Let m denote this least element. By Theorem 1 in Course Notes A, $m \geq 1$. Notice $1 \notin T$ as $1 \in S, 1 \in \mathbb{P}$, and thus m > 1. As m is the least element of $T, m - 1 \notin T$.

Claim: $m \in \mathbb{P}$ with m > 1 implies $m - 1 \in \mathbb{P}$.

Proof of claim: Suppose not. Then there exists an inductive set A such that $m-1 \notin A$. Consider the set $B = A - \{m\}$. We wish to prove B is inductive. Since $m \neq 1, 1 \in B$. Now suppose $k \in B \subset A$. As A is inductive, $k+1 \in A$ and thus $k + 1 \in B$ or k + 1 = m. In the first case, B is inductive. The second case implies $m - 1 = k \in B \subset A$. This contradicts the construction of A. Thus, if $m - 1 \notin \mathbb{P}$, then there exists an inductive set B such that $m \notin B$. This contradicts the assumption that $m \in \mathbb{P}$. It follows that $m - 1 \in \mathbb{P}$.

Now, back to the main proof. As $m-1 \notin T$ and $m-1 \in \mathbb{P}$ it follows that $m-1 \in S$. But by the properties of $S, m-1+1 = m \in S$. This contradicts the fact that $m \in T$. It follows that T cannot have a least element. The well ordering principle then implies that $T = \emptyset$. That is $S = \mathbb{P}$.

Problem 5: Suppose $\lim_{x\to p^+} f(x) = \lim_{x\to p^-} f(x) = A$. Prove $\lim_{x\to p} f(x) = A$

Solution Let $\epsilon > 0$. By hypothesis, there exist δ_1, δ_2 such that $p < x < p + \delta_1$ implies $|f(x) - A| < \epsilon$ and $p - \delta_2 < x < p$ implies $|f(x) - A| < \epsilon$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then $0 < |x - p| < \delta$ implies $|f(x) - A| < \epsilon$. MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.