PRACTICE EXAM 2

(1) (10 points) Find

$$
\lim _{h \rightarrow 0} \frac{\int_{0}^{1+h} e^{t^{2}} d t-\int_{0}^{1} e^{t^{2}} d t}{h\left(3+h^{2}\right)}
$$

(If you're using a theorem, state the theorem you're using.)
(2) (10 points) Find $\left(f^{-1}\right)^{\prime}(0)$ where $\left.f(x)=\int_{0}^{x} \cos (\sin t)\right) d t$ is defined on $[-\pi / 2, \pi / 2]$.
(3) (10 points) In each case below, assume f is continuous for all x. Find $f(2)$.

$$
\int_{0}^{x} f(t) d t=x^{2}(1+x) ; \quad \int_{0}^{f(x)} t^{2} d t=x^{2}(1+x)
$$

(4) (15 points) Give an example of a function $f(x)$ defined on $[-1,1]$ such that

- f is continuous and differentiable on $[-1,1]$
- f^{\prime} is not continuous for at least one value of $x \in[-1,1]$.
(5) (15 points) Let $f(x)$ be continuous on $[0,1]$ such that $f(0)=f(1)$. Show that for any $n \in \mathbb{Z}^{+}$there exists at least one $x \in[0,1]$ such that $f(x)=$ $f(x+1 / n)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

