Practice Exam 2 Solutions

Problem 1. Find

$$
\lim _{h \rightarrow 0} \frac{\int_{0}^{1+h} e^{t^{2}} d t-\int_{0}^{1} e^{t^{2}} d t}{h\left(3+h^{2}\right)}
$$

Solution First, using that the limit of a product is the product of limits, we get

$$
\lim _{h \rightarrow 0} \frac{\int_{0}^{1+h} e^{t^{2}} d t-\int_{0}^{1} e^{t^{2}} d t}{h\left(3+h^{2}\right)}=\lim _{h \rightarrow 0} \frac{\int_{0}^{1+h} e^{t^{2}} d t-\int_{0}^{1} e^{t^{2}} d t}{h} \lim _{h \rightarrow 0} \frac{1}{3+h^{2}}
$$

Because $\frac{1}{3+h^{2}}$ is a continuous function at $h=0$, the second limit is $\frac{1}{3}$. Define

$$
g(x)=\int_{0}^{x} e^{t^{2}} d t
$$

Then the first limit is

$$
g^{\prime}(1)=\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h} .
$$

By the fundamental theorem of calculus, $g^{\prime}(1)=e^{1^{2}}=e$. Mutiplying the two limits together, our final answer is $\frac{e}{3}$.

Problem 2. Find $\left(f^{-1}\right)^{\prime}(0)$ where $f(x)=\int_{0}^{x} \cos (\sin (t)) d t$ is defined on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Solution First, we check that f is strictly increasing and continuous on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. To show f is stricly increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, it is enough to show $f^{\prime}(x)>0$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. By the fundamental theorem of calculus, $f^{\prime}(x)=\cos (\sin (x))$. For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have $\sin (x) \in(-1,1)$, and for $y \in(-1,1)$, we have $\cos y>0$. Thus, f is strictly increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Moreover, f is continuous on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ by theorem 3.4 and differentiable on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ by the fundamental theorem of calculus (theorem 5.1). Then by theorem 6.7,

$$
\left(f^{-1}\right)^{\prime}(f(0))=\frac{1}{f^{\prime}(0)}
$$

Since $f(0)=0$, and $f^{\prime}(0)=\cos (\sin (0))=1$ by the fundamental theorem of calculus (theorem 5.1), we deduce $\left(f^{-1}\right)^{\prime}(0)=1$.

Problem 3: In each case below, assume f is continuous for all x. Find $f(2)$. (a)

$$
\int_{0}^{x} f(t) d t=x^{2}(1+x)
$$

(b)

$$
\int_{0}^{f(x)} t^{2} d t=x^{2}(1+x)
$$

Solution (a) Differentiating both sides of the equality yields

$$
f(x)=2 x(1+x)+x^{2}=3 x^{2}+2 x
$$

To differentiate the left hand side, we used the fundamental theorem of calculus. To differentiate the right hand side, we used the product rule. Plugging in $x=2$ yields

$$
f(2)=16 .
$$

(b) For this part, we integrate the left hand side to get

$$
\frac{f(x)^{3}}{3}=x^{2}(1+x)
$$

Plugging in $x=2$ and solving for $f(2)$, we get $f(2)=(36)^{\frac{1}{3}}$.

Problem 4. Give an example of a function $f(x)$ defined on $[-1,1]$ such that

- f is continuous and differentiable on $[-1,1]$.
- f^{\prime} is not continuous for at least one value $x \in[-1,1]$.

Solution Let

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right\} .
$$

For $x \neq 0, f(x)$ is a product of compositions of differentiable functions. Thus, f is differentiable for $x \in[-1,1], x \neq 0$. Note

$$
0 \leq\left|\frac{h^{2} \sin \left(\frac{1}{h}\right)}{h}\right| \leq\left|\frac{h^{2}}{h}\right|=|h|
$$

Thus, using the squeezing principle (theorem 3.3), we deduce

$$
\lim _{h \rightarrow 0}\left|\frac{f(h)-f(0)}{h}\right|=0 .
$$

We conclude that $f^{\prime}(0)$ exists and equals zero. By a theorem from class, f is continuous on $[-1,1]$ because f is differentiable on $[-1,1]$. Next, we need to show that f^{\prime} is discontinuous at $x=0$. By the product rule and the chain rule, we have

$$
f^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x) \text { if } x \neq 0,
$$

and we know $f^{\prime}(0)=0$. Assume f^{\prime} is continuous at $x=0$. Then there must exist $\delta>0$ such that $|x|<\delta$ implies that $\left|f^{\prime}(x)\right|<\frac{1}{2}$. Choose $x_{0}=\frac{1}{2 \pi n}<\delta$ with n a positive integer. Then

$$
f^{\prime}\left(x_{0}\right)=2 \frac{1}{2 \pi n} \sin (2 \pi n)-\cos (2 \pi n)=0-1=-1
$$

But, by assumption $\left|f^{\prime}\left(x_{0}\right)\right|<\frac{1}{2}$. This is a contradiction. Thus, f^{\prime} is not continuous at $x=0$.

Problem 5. Let $f(x)$ be continuous on $[0,1]$, and assume $f(0)=f(1)$. Show that for any $n \in \mathbb{Z}^{+}$, there exists at least one $x \in[0,1]$ such that $f(x)=f\left(x+\frac{1}{n}\right)$.

Solution Consider the continuous function $g_{n}(x)=f(x)-f\left(x+\frac{1}{n}\right)$ on the interval $\left[0, \frac{n-1}{n}\right]$. Consider the set $g_{n}(0), g_{n}\left(\frac{1}{n}\right), \ldots, g_{n}\left(\frac{n-1}{n}\right)$. If $g_{n}\left(\frac{k}{n}\right)=0$ for some k then $f\left(x+\frac{k}{n}\right)=f\left(x+\frac{k}{n}+\frac{1}{n}\right)$ and we are done. Hence, we may assume that $g_{n}\left(\frac{k}{n}\right) \neq 0$ for $k=0,1, \ldots n-1$. Note

$$
\sum_{k=0}^{n-1} g_{n}\left(\frac{k}{n}\right)=f(0)-f(1)=0
$$

If $g_{n}\left(\frac{k}{n}\right)>0$ for $k=0, \ldots, n-1$, then the sum is positive, and if $g_{n}\left(\frac{k}{n}\right)<0$ for $k=0, \ldots, n-1$, then the sum is negative. Since the sum is neither positive nor negative, there must be k_{1} and k_{2} such that $g_{n}\left(\frac{k_{1}}{n}\right)>0$ and $g_{n}\left(\frac{k_{2}}{n}\right)<0$. Putting $y_{1}=\min \left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}\right\}$ and $y_{2}=\max \left\{\frac{k_{1}}{n}, \frac{k_{2}}{n}\right\}$, we note that $g_{n}\left(y_{1}\right)$ and $g_{n}\left(y_{2}\right)$ have opposite signs. Therefore, by the intermediate value theorem, there must be $y \in\left(y_{1}, y_{2}\right)$ such that $g_{n}(y)=0$. In particular,

$$
f(y)=f\left(y+\frac{1}{n}\right)
$$

as desired.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

