PRACTICE EXAM 3

- (1) Evaluate $\int \frac{t^3+t}{\sqrt{1+t^2}} dt$
- (2) Evaluate $\int_3^5 x^3 \sqrt{x^2 9} dx$
- (3) Suppose that $\lim_{x\to a^+} g(x) = B \neq 0$ where B is finite and $\lim_{x\to a^+} h(x) = 0$, but $h(x) \neq 0$ in a neighborhood of a. Prove that

$$\lim_{x \to a^+} \left| \frac{g(x)}{h(x)} \right| = \infty$$

- (4) Let $f(x): [0, \infty) \to \mathbb{R}^+$ be a positive continuous function such that $\lim_{x\to\infty} f(x) = 0$. Prove there exists $M \in \mathbb{R}^+$ such that $\max_{x \in [0,\infty)} f(x) = M$.
- (5) A sequence is called *Cauchy* if for all $\epsilon > 0$ there exists $N \in \mathbb{Z}^+$ such that for all m, n > N, $|a_m a_n| < \epsilon$. Prove that if $\{a_n\}$ is a convergent sequence, then it is Cauchy. (The converse is also true.)
 - A function $f : \mathbb{R} \to \mathbb{R}$ is called a *contraction* if there exists $0 \le \alpha < 1$ such that $|f(x) f(y)| \le \alpha |x y|$. Let f be a contraction. For any $x \in \mathbb{R}$, prove the sequence $\{f^n(x)\}$ is Cauchy, where $f^n(x) = f \circ f \circ \cdots \circ f(x)$ (the n times composition of f with itself).

MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.