PRACTICE EXAM 3

(1) Evaluate $\int \frac{t^{3}+t}{\sqrt{1+t^{2}}} d t$
(2) Evaluate $\int_{3}^{5} x^{3} \sqrt{x^{2}-9} d x$
(3) Suppose that $\lim _{x \rightarrow a^{+}} g(x)=B \neq 0$ where B is finite and $\lim _{x \rightarrow a^{+}} h(x)=$ 0 , but $h(x) \neq 0$ in a neighborhood of a. Prove that

$$
\lim _{x \rightarrow a^{+}}\left|\frac{g(x)}{h(x)}\right|=\infty
$$

(4) Let $f(x):[0, \infty) \rightarrow \mathbb{R}^{+}$be a positive continuous function such that $\lim _{x \rightarrow \infty} f(x)=$ 0 . Prove there exists $M \in \mathbb{R}^{+}$such that $\max _{x \in[0, \infty)} f(x)=M$.
(5) - A sequence is called Cauchy if for all $\epsilon>0$ there exists $N \in \mathbb{Z}^{+}$such that for all $m, n>N,\left|a_{m}-a_{n}\right|<\epsilon$. Prove that if $\left\{a_{n}\right\}$ is a convergent sequence, then it is Cauchy. (The converse is also true.)

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a contraction if there exists $0 \leq \alpha<1$ such that $|f(x)-f(y)| \leq \alpha|x-y|$. Let f be a contraction. For any $x \in$ \mathbb{R}, prove the sequence $\left\{f^{n}(x)\right\}$ is Cauchy, where $f^{n}(x)=f \circ f \circ \cdots \circ f(x)$ (the n times composition of f with itself).

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

