Practice Exam 3 Solutions

Problem 1. Evaluate $\int \frac{t^{3}+t}{\sqrt{1+t^{2}}} d t$
Solution The problem can be simplified as $t^{3}+t=t\left(t^{2}+1\right)$. Then by substitution with $u=t^{2}+1$ and thus $d u=2 t d t$ we have

$$
\int t \sqrt{t^{2}+1} d t=\frac{1}{2} \int u^{1 / 2} d u=\frac{1}{3} u^{3 / 2}+C=\frac{1}{3}\left(t^{2}+1\right)^{3 / 2}+C .
$$

Problem 2. Evaluate $\int_{3}^{5} x^{3} \sqrt{x^{2}-9} d x$
Solution We begin by making the substitution $x^{2}-9=u$. Then $2 x d x=d u$ and $x^{2}=u+9$. Substituting in, we get
$\int_{0}^{16}(u+9) \sqrt{u} \frac{d u}{2}=\frac{1}{2} \int_{0}^{16} u^{3 / 2}+9 u^{1 / 2} d u=\left.\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}+\frac{18}{3} u^{3 / 2}\right)\right|_{0} ^{16}=\frac{1}{5} 16^{5 / 2}+3 \cdot 16^{3 / 2}$.

Problem 3: Suppose that $\lim _{x \rightarrow a^{+}} g(x)=B \neq 0$ where B is finite and $\lim _{x \rightarrow a^{+}} h(x)=$ 0 , but $h(x) \neq 0$ in a neighborhood of a. Prove that

$$
\lim _{x \rightarrow a^{+}}\left|\frac{g(x)}{h(x)}\right|=\infty
$$

Solution Let $M \in \mathbb{R}^{+}$and set $\epsilon=1 /(2 M)>0$. By hypothesis, there exist δ_{1}, δ_{2} such that $|g(x)-B|<|B| / 2$ if $0<x-a<\delta_{1}$ and $|h(x)|<|B| \epsilon$ if $0<x-a<\delta_{2}$. Choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for $0<x-a<\delta,|g(x)|>|B| / 2$ and $|h(x)|^{-1}>$ $1 /(|B| \epsilon)$. Thus

$$
\frac{|g(x)|}{|h(x)|}>\frac{|B|}{2|B| \epsilon}=\frac{1}{2 \epsilon}=M .
$$

This proves the result.

Problem 4. Let $f(x):[0, \infty) \rightarrow \mathbb{R}^{+}$be a positive continuous function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove there exists $M \in \mathbb{R}^{+}$such that $\max _{x \in[0, \infty)} f(x)=M$.

Solution By hypothesis, there exists $N \in \mathbb{R}^{+}$such that for all $x>N, f(x)<f(1)$. (We don't need absolute values here as f is positive.) Now consider the interval $[0, N]$. As f is continuous and $[0, N]$ is closed, the Extreme Value Theorem tells us there exists $w \in[0, N]$ such that $f(w) \geq f(x)$ for all $x \in[0, N]$. That is, $f(w) \geq f(1)$. As $f(1)>f(x)$ for all $x>N, f(w) \geq f(x)$ for all $x \in[0, \infty)$.

Problem 5.

- A sequence is called Cauchy if for all $\epsilon>0$ there exists $N \in \mathbb{Z}^{+}$such that for all $m, n>N,\left|a_{m}-a_{n}\right|<\epsilon$. Prove that if $\left\{a_{n}\right\}$ is a convergent sequence, then it is Cauchy. (The converse is also true.)
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a contraction if there exists $0 \leq \alpha<1$ such that $|f(x)-f(y)| \leq \alpha|x-y|$. Let f be a contraction. For any $x \in \mathbb{R}$, prove the sequence $\left\{f^{n}(x)\right\}$ is Cauchy, where $f^{n}(x)=f \circ f \circ \cdots \circ f(x)$ (the n times composition of f with itself).

Solution (a) By hypothesis $\left\{a_{n}\right\}$ is a convergent sequence, with limit L. Let $\epsilon>0$. Then there exists $N \in \mathbb{Z}^{+}$such that for all $n \geq N,\left|a_{n}-L\right|<\epsilon / 2$. Thus, for all $m, n \geq N,\left|a_{m}-a_{n}\right| \leq\left|a_{m}-L\right|+\left|a_{n}-L\right|<\epsilon / 2+\epsilon / 2=\epsilon$, where the first inequality follows by the triangle inequality. It follows that $\left\{a_{n}\right\}$ is Cauchy.
(b) Fix $x \in \mathbb{R}$ and denote $|x-f(x)|=C$. We first claim, $\left|f^{n}(x)-f^{n+1}(x)\right| \leq \alpha^{n} \cdot C$ and proceed to prove it by induction. Notice that $\left|f(x)-f^{2}(x)\right| \leq \alpha|x-f(x)|=\alpha C$ so the statement holds for $n=1$. Now assume the statement holds for some n. We proceed to show it holds for $n+1$. As f is a contraction, and by the induction hypothesis

$$
\left|f^{n+1}(x)-f^{n+2}(x)\right|=\left|f\left(f^{n}(x)\right)-f\left(f^{n+1}(x)\right)\right| \leq \alpha\left|f^{n}(x)-f^{n+1}(x)\right| \leq \alpha \alpha^{n} C=\alpha^{n+1} C
$$

Now consider the quantity $\left|f^{n}(x)-f^{k}(x)\right|$ for $k>n$. Notice, by the triangle inequality,

$$
\left|f^{n}(x)-f^{k}(x)\right| \leq \sum_{i=0}^{k-1}\left|f^{n+i}(x)-f^{n+i+1}(x)\right| \leq C \sum_{i=0}^{k-1} \alpha^{n+i}=C \alpha^{n} \sum_{i=0}^{k-1} \alpha^{i}
$$

As $0 \leq \alpha<1, \sum_{i=0}^{k-1} \alpha^{i}<\frac{1}{1-\alpha}$ for all k. Now, for any $\epsilon>0$, choose N such that $\frac{C}{1-\alpha} \cdot \alpha^{N}<\epsilon$. Then for any $n, k \geq N$, the previous work implies

$$
\left|f^{n}(x)-f^{k}(x)\right| \leq \frac{C}{1-\alpha} \cdot \alpha^{\min \{n, k\}} \leq \frac{C}{1-\alpha} \cdot \alpha^{N}<\epsilon
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

