The First Fundamental Theorem of Calculus

Our first example is the one we worked so hard on when we first introduced definite integrals:

Example: $F(x)=\frac{x^{3}}{3}$.
When we differentiate $F(x)$ we get $f(x)=F^{\prime}(x)=x^{2}$. The fundamental theorem of calculus tells us that:

$$
\int_{a}^{b} x^{2} d x=\int_{a}^{b} f(x) d x=F(b)-F(a)=\frac{b^{3}}{3}-\frac{a^{3}}{3}
$$

This is more compact in the new notation. We'll use it to find the definite integral of x^{2} on the interval from 0 to b, to get exactly the result we got before:

$$
\int_{0}^{b} x^{2} d x=\int_{0}^{b} f(x) d x=\left.F(x)\right|_{0} ^{b}=\left.\frac{x^{3}}{3}\right|_{0} ^{b}=\frac{b^{3}}{3}
$$

By using the fundamental theorem of calculus we avoid the elaborate computations, difficult sums, and evaluation of limits required by Riemann sums.

Example: Area under one "hump" of $\sin (x)$.

Figure 1: $\sin (x)$ for $0<x<\pi$

The area under the curve $y=\sin x$ between 0 and π is given by the definite integral $\int_{0}^{\pi} \sin (x) d x$. The antiderivative of $\sin (x)$ is $-\cos (x)$, so we apply the fundamental theorem of calculus with $F(x)=-\cos (x)$ and $f(x)=\sin (x)$:

$$
\int_{0}^{\pi} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi}
$$

Be careful with the arithmetic on the next step; it's easy to make a mistake:

$$
-\left.\cos (x)\right|_{0} ^{\pi}=-\cos (\pi)-(-\cos (0))=-(-1)-(-1)=2
$$

So the area under one hump of the graph of $\sin (x)$ is simply 2 square units.
Example: $\int_{0}^{1} x^{100} d x$

$$
\int_{0}^{1} x^{100} d x=\left.\frac{x^{101}}{101}\right|_{0} ^{1}=\frac{1}{101}-0=\frac{1}{101}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

