Properties of Integrals

The symbol \int originated as a stylized letter S; in French, they call integrals sums. We know from our discussion of Riemann sums that definite integrals are just limits of sums. Because of this, it's not surprising that:

1. The integral of a sum is the sum of the integrals:

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

2. We can factor out a constant multiple:

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \quad(c \text { constant })
$$

(don't try to factor out a non-constant function!)
3. We can combine definite integrals. If $a<b<c$ then:

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

Figure 1: Combining two areas under a curve
4. $\int_{a}^{a} f(x) d x=0$
5. This statement gives us some freedom in choosing limits of integration and allows us to remove the condition that $a<b<c$ from property (3):

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

This makes sense; $F(b)-F(a)=-(F(a)-F(B))$.
6. (Estimation) If $f(x) \leq g(x)$ and $a<b$, then:

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

In other words, if I'm going more slowly than you then you go further than I do. Caution: this only works if $a<b$.
7. (Change of Variables or "Substitution") In indefinite integrals, if $u=$ $u(x)$ then $d u=u^{\prime}(x) d x$ and $\int g(u) d u=\int g(u(x)) u^{\prime}(x) d x$. To adapt this to definite integrals we need to know what happens to our limits of integration; it turns out that the answer is very simple.

$$
\int_{u_{1}}^{u_{2}} g(u) d u=\int_{x_{1}}^{x_{2}} g(u(x)) u^{\prime}(x) d x
$$

where $u_{1}=u\left(x_{1}\right)$ and $u_{2}=u\left(x_{2}\right)$. This is true if u is always increasing or always decreasing on $x_{1}<x<x_{2}$; in other words, if u^{\prime} does not change sign. (If u^{\prime} does change sign you must break the integral into pieces; we'll see an example of this later.)

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

