Example of Estimation

Here's an example in which we use the estimation property of integrals: if $f(x) \leq g(x)$ and $a<b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

The example is the same as one we've already seen. We'll start with an inequality and then integrate it to reach a conclusion about the antiderivatives.

We know that $e^{x} \geq 1$ for $x \geq 0$; this is our starting place. We integrate this expression, then follow our noses to get the result we're expecting:

$$
\begin{aligned}
e^{x} & \geq 1 \quad(x \geq 0) \\
\int_{0}^{b} e^{x} d x & \geq \int_{0}^{b} 1 d x \quad(b \geq 0) \\
\left.e^{x}\right|_{0} ^{b} & \geq b \quad(\text { area of rectangle with base } b \text { and height 1.) } \\
e^{b}-1 & \geq b \\
e^{b} & \geq 1+b \quad(b \geq 0)
\end{aligned}
$$

Notice that we can still compute the integral if $b<0$, but in that case e^{b} is not greater than or equal to 1 , and so we can't use the estimation property to conclude that $e^{b} \geq 1+b$.

Figure 1: The graphs of e^{x} (black) compared to $1+x$ and $1+x+\frac{x^{2}}{2}$ (red).

Now we repeat the process starting from the conclusion:

$$
\begin{aligned}
e^{x} & \geq 1+x \quad(x \geq 0) \\
\int_{o}^{b} e^{x} d x & \geq \int_{0}^{b}(1+x) d x \quad(b \geq 0)
\end{aligned}
$$

$$
\begin{aligned}
e^{b}-1 & \geq\left.\left(x+\frac{x^{2}}{2}\right)\right|_{0} ^{b} \\
e^{b}-1 & \geq b+\frac{b^{2}}{2} \\
e^{b} & \geq 1+b+\frac{b^{2}}{2} \quad(b \geq 0)
\end{aligned}
$$

In this case, the conclusion is false if $b<0$.
We can easily keep going with this, producing higher and higher degree interesting polynomial lower bounds for e^{x}. For example, if we let $b=1$ in our final conclusion we discover that $e \geq 2 \frac{1}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

