Example: Change of Variables

Example: $\int_{1}^{2}\left(x^{3}+2\right)^{5} x^{2} d x$
Before, we would have tried to handle this integral by substitution, using $u=x^{3}+2$. We're going to do the same thing here, taking into account the limits.

First we compute $d u=3 x^{2}$. We'll be integrating u^{5}, and $\frac{1}{3} d u$ will replace $x^{2} d x$. All that's left to set up the integral is to figure out the new limits; this is one of the reasons we use $d x$ and $d u$ - to remind ourselves which variable is involved in the integration.

Initially, x is varying between 1 and 2 . So $u_{1}=1^{3}+2=3$ and $u_{2}=2^{3}+2=$ 10. Now we can finish the problem:

$$
\begin{aligned}
\int_{x=1}^{x=2}\left(x^{3}+2\right)^{5} x^{2} d x & =\int_{u=3}^{u=10} u^{5} \frac{1}{3} u d u \\
& =\left.\frac{u^{6}}{18}\right|_{u=3} ^{u=10}\left(\left.\operatorname{not} \frac{u^{6}}{18}\right|_{1} ^{2}\right) \\
& =\frac{1}{18}\left(10^{6}-3^{6}\right)
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

