Substitution When u^{\prime} Changes Sign

We've been told that changing variables of integration only works if $u(x)$ is either always increasing or always decreasing on the interval of integration. Let's see what goes wrong by trying to calculate $\int_{-1}^{1} x^{2} d x$.

We'll try plugging in $u(x)=x^{2}$; then we get:

$$
\begin{aligned}
d u & =2 x d x \\
d x & =\frac{1}{2 x} d u=\frac{1}{2 \sqrt{u}} d u \\
u_{1} & =(-1)^{2} \text { and } \\
u_{2}=(-1)^{2} &
\end{aligned}
$$

Thus:

$$
\int_{-1}^{1} x^{2} d x=\int_{1}^{1} u \frac{1}{2 \sqrt{u}} d u=0
$$

But we know that $\int_{-1}^{1} x^{2} d x$ is not zero; it's the area under a parabola. Our conclusion is not true.

The reason for this is that $u^{\prime}(x)=2 x$ is negative when $x<0$ and positive when $x>0$; the sign change causes us trouble. If we break the integral into two halves so that u^{\prime} has a consistent sign on each half, we'll be able to compute the integral without difficulty.

We could actually have caught this early; there is a mistake in our calculation of the expression for $d x$. In fact, when we wrote:

$$
\frac{1}{2 x} d u=\frac{1}{2 \sqrt{u}} d u
$$

we should have noticed that in fact:

$$
\frac{1}{2 x} d u=\frac{1}{ \pm 2 \sqrt{u}} d u
$$

It's possible to use this formula to get the correct answer, but not recommended. Instead, just split your integral into intervals over which u^{\prime} is always either positive or negative.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

