The Fundamental Theorem and the Mean Value Theorem

Our goal is to use information about F^{\prime} to derive information about F. Our first example of this process will be to compare the first fundamental theorem to the Mean Value Theorem.

We'll use the notation $\Delta F=F(b)-F(a)$ and $\Delta x=b-a$. The first fundamental theorem then tells us that:

$$
\Delta F=\int_{a}^{b} f(x) d x
$$

If we divide both sides by Δx we get:

$$
\frac{\Delta F}{\Delta x}=\underbrace{\frac{1}{b-a} \int_{a}^{b} f(x) d x}_{\text {Average }(f)}
$$

the expression on the right is the average value of the function $f(x)$ on the interval $[a, b]$.

Why is this the average of f and not of F ? Consider the following Riemann sum:

$$
\int_{0}^{n} f(x) d x \approx f(1)+f(2)+\cdots+f(n)
$$

This is a cumulative sum of values of $f(x)$. The quantity:

$$
\frac{\int_{0}^{n} f(x) d x}{n} \approx \frac{f(1)+f(2)+\cdots+f(n)}{n}
$$

is an average of values of $f(x)$; in the limit, the average value of $f(x)$ on the interval $[a, b]$ is given by $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

We'll rewrite the first fundamental theorem one more time as:

$$
\Delta F=\operatorname{Average}\left(F^{\prime}\right) \Delta x
$$

In other words, the change in F is the average of the infinitesimal change times the amount of time elapsed. We can now use inequalities to compare this to the mean value theorem, which says that $\frac{F(b)-F(a)}{b-a}=F^{\prime}(c)$ for some c between a and b. We can rewrite this as:

$$
\Delta F=F^{\prime}(c) \Delta x
$$

The value of Average $\left(F^{\prime}\right)$ in the first fundamental theorem is very specific, but the $F^{\prime}(c)$ from the mean value theorem is not; all we know about c is that it's somewhere between a and b.

Even if we don't know exactly what c is, we know for sure that it's less than the maximum value of F^{\prime} on the interval from a to b, and that it's greater than the minimum value of F^{\prime} on that interval:

$$
\left(\min _{a<x<b} F^{\prime}(x)\right) \Delta x \leq \Delta F=F^{\prime}(c) \Delta x \leq\left(\max _{a<x<b} F^{\prime}(x)\right) \Delta x
$$

The first fundamental theorem of calculus gives us a much more specific value - Average $\left(F^{\prime}\right)$ - from which we can draw the same conclusion.

$$
\left(\min _{a<x<b} F^{\prime}(x)\right) \Delta x \leq \Delta F=\text { Average } F^{\prime} \Delta x \leq\left(\max _{a<x<b} F^{\prime}(x)\right) \Delta x
$$

The fundamental theorem of calculus is much stronger than the mean value theorem; as soon as we have integrals, we can abandon the mean value theorem. We get the same conclusion from the fundamental theorem that we got from the mean value theorem: the average is always bigger than the minimum and smaller than the maximum. Either theorem gives us the same conclusion about the change in F :

$$
\left(\min _{a<x<b} F^{\prime}(x)\right) \Delta x \leq \Delta F \leq\left(\max _{a<x<b} F^{\prime}(x)\right) \Delta x
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

