The Mean Value Theorem and Estimation

The following problem appeared on the second exam:
Given that $F^{\prime}(x)=\frac{1}{1+x}$ and $F(0)=1$, the mean value theorem implies that $A<F(4)<B$ for which A and B ?

Figure 1: Graph of $F^{\prime}(x)=\frac{1}{1+x}$.
To solve this, we first apply the mean value theorem in such a way that the value $F(4)$ appears, then use our knowledge of the formula for $F^{\prime}(c)$ to find limits on that value. Remember that c is an unknown value between (in this case) 0 and 4 .

$$
\begin{aligned}
F(4)-F(0) & =F^{\prime}(c)(4-0) \quad(\text { Use the MVT on } F(4)) \\
& =\frac{1}{1+c} \cdot 4
\end{aligned}
$$

We don't know what $\frac{1}{1+c}$ is, but we know that $\frac{1}{x}$ decreases from 0 to infinity, so:

$$
1=\frac{1}{1}>\frac{1}{1+c}>\frac{1}{1+4}=\frac{1}{5}
$$

Hence:

$$
4>\frac{1}{1+c} \cdot 4>\frac{4}{5}
$$

We conclude that:

$$
4>F(4)-F(0)>\frac{4}{5}
$$

and since $F(0)=1$ we have:

$$
5>F(4)>\frac{9}{5}
$$

Our final answer is $A=\frac{9}{5}$ and $B=5$.

Now let's compare this to what we can do with the fundamental theorem of calculus:

$$
F(4)-F(0)=\int_{0}^{4} \frac{d x}{1+x}
$$

Based on what we know about the graph of $y=\frac{1}{x}$ and the area under it, we can deduce that:

$$
F(4)-F(0)=\int_{0}^{4} \frac{d x}{1+x}<\int_{0}^{4} 1 d x=4
$$

and that

$$
F(4)-F(0)=\int_{0}^{4} \frac{d x}{1+x}>\int_{0}^{4} \frac{1}{5} d x=\frac{4}{5}
$$

So once again we have:

$$
\frac{4}{5}<F(4)-F(0)<4
$$

Geometrically, we interpret $\int_{0}^{4} \frac{d x}{1+x}$ as the area under a curve. We got an upper bound on the area by comparing it to the area of a rectangle whose height was the maximum value of $\frac{1}{1+x}$ on the interval, and got a lower bound by comparing to a rectangle whose hight was the minimum of $\frac{1}{1+x}$ on $[0,4]$.

We could think of this as estimating $\int_{0}^{4} \frac{d x}{1+x}$ by comparing it to two different Riemann sums, each with only one rectangle.

$$
\text { lower Riemann sum }<\int_{0}^{4} \frac{d x}{1+x}<\text { upper Riemann sum }
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

