MODEL ANSWERS TO HWK \#10 (18.022 FALL 2010)

(1) We want to show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. We show that $I=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$ by proving that

$$
I^{2}=\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4}
$$

(i) The square of side a defined by $0<x<a$ and $0<y<a$ contains Q_{a}, the quarter circle of radius a, and thus:

$$
\int_{0}^{a} \int_{0}^{a} e^{-\left(x^{2}+y^{2}\right)} d x d y \geq \iint_{Q_{a}} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{a} e^{-r^{2}} r d r d \theta=\frac{\pi}{2}\left(\left.\frac{-e^{-r^{2}}}{2}\right|_{r=0} ^{a}=\frac{\pi}{4}\left(1-e^{-a^{2}}\right)\right.
$$

Taking the limit as a goes to ∞, we conclude that $I^{2} \geq \frac{\pi}{4}$.
(ii) The square of side a defined by $0<x<a$ and $0<y<a$ is contained in $Q_{\sqrt{2} a}$, the quarter circle of radius $\sqrt{2} a$, and thus:

$$
\int_{0}^{a} \int_{0}^{a} e^{-\left(x^{2}+y^{2}\right)} d x d y \leq \iint_{Q_{\sqrt{2} a}} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2} a} e^{-r^{2}} r d r d \theta=\frac{\pi}{2}\left(\left.\frac{-e^{-r^{2}}}{2}\right|_{r=0} ^{\sqrt{2} a}=\frac{\pi}{4}\left(1-e^{-2 a^{2}}\right)\right.
$$

Taking the limit as a goes to ∞, we conclude that $I^{2} \leq \frac{\pi}{4}$.
(2) (5.5.15)

$$
\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A=\int_{0}^{2 \pi} \int_{0}^{3} r^{3} r d r d \theta=2 \pi\left(\left.\frac{r^{5}}{5}\right|_{r=0} ^{3}=\frac{486}{5} \pi\right.
$$

(3) $(5.5 .16)$

$$
\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} e^{x^{2}+y^{2}} d x d x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{a} e^{r^{2}} r d r d \theta=\pi\left(\left.\frac{e^{r^{2}}}{2}\right|_{r=0} ^{a}=\frac{\pi}{2}\left(e^{a^{2}}-1\right)\right.
$$

(4) (5.5.20)

$$
\begin{aligned}
\int_{\text {rose }} d A & =4 \int_{\text {leaf }} d A=4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin 2 \theta} r d r d \theta=4 \int_{0}^{\frac{\pi}{2}} \frac{(\sin 2 \theta)^{2}}{2} d \theta \\
& =2 \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 4 \theta}{2} d \theta=\frac{\pi}{2}-\frac{1}{4}\left(\left.\sin 4 \theta\right|_{\theta=0} ^{\frac{\pi}{2}}=\frac{\pi}{2}\right.
\end{aligned}
$$

(5) (5.5.21) The cardioid and the circle intersect at the points $(0,1)$ and $(0,-1)$, and since we want the area inside the cardioid and outside the circle, the bounds of integration for θ must
be $\pi / 2$ to $3 \pi / 2$.

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \int_{1}^{1-\cos \theta} r d r d \theta & =\frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left((1-\cos \theta)^{2}-1^{2}\right) d \theta=\frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(\cos ^{2} \theta-2 \cos \theta\right) d \theta \\
& =\frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(\frac{1+\cos 2 \theta}{2}-2 \cos \theta\right) d \theta \\
& =\frac{\pi}{4}+\frac{1}{8}(\sin 3 \pi-\sin \pi)-\left(\sin \frac{3 \pi}{2}-\sin \frac{\pi}{2}\right)=\frac{\pi}{4}+2
\end{aligned}
$$

(6) (5.5.22)

$$
\int_{0}^{2 \pi} \int_{0}^{3 \theta} r d r d \theta=\int_{0}^{2 \pi} \frac{9 \theta^{2}}{2} d \theta=\frac{9}{2}\left(\left.\frac{\theta^{3}}{3}\right|_{\theta=0} ^{2 \pi}=\frac{9}{2} \frac{8 \pi^{3}}{3}=12 \pi^{3}\right.
$$

(7) (5.5.29)

$$
\begin{aligned}
\iiint_{W} d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{10-2 r^{2}}}^{\sqrt{10-2 r^{2}}} r d z d r d \theta=2 \pi \int_{0}^{1} 2 \sqrt{10-2 r^{2}} r d r \\
& =-\pi\left(\left.\frac{\left(10-2 r^{2}\right)^{3 / 2}}{3 / 2}\right|_{r=0} ^{1}=\frac{4 \sqrt{2}}{3} \pi(5 \sqrt{5}-8)\right.
\end{aligned}
$$

(8) (5.5.30)

$$
\begin{equation*}
\iiint_{W} d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{9-r^{2}} r d z d r d \theta=2 \pi \int_{0}^{2}\left(9 r-r^{3}\right) d r=2 \pi\left(\frac{9 r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{r=0} ^{2}=28 \pi\right. \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
\iiint_{W}\left(2+x^{2}+y^{2}\right) d V & =\int_{0}^{2 \pi} \int_{3}^{5} \int_{0}^{\sqrt{25-z^{2}}} r d z d r d \theta=2 \pi \int_{3}^{5}\left(r^{2}+\left.\frac{r^{4}}{4}\right|_{r=0} ^{\sqrt{25-z^{2}}} d z\right. \\
& =\int_{3}^{5}\left(25-z^{2}+\frac{625-50 z^{2}+z^{4}}{4}\right) d z=\int_{3}^{5}\left(\frac{725}{4}-\frac{23}{2} z^{2}+\frac{z^{4}}{4}\right) d z \\
& =\frac{656}{5} \pi
\end{aligned}
$$

(10) (5.5.32) By symmetry reasons, the total volume of the solid is 16 times the volume of the portion defined by $z>0, x>0$ and $0<y<x$: this sixteenth of the solid is bounded on the bottom by the plane $z=0$, on the sides by the planes $y=0$ and $y=x$ and by the cylinder $x^{2}+y^{2}=a^{2}$, and on top by $x^{2}+z^{2}=a^{2}$. We write the integral in cylindrical coordinates:

$$
\begin{aligned}
\text { Volume } & =16 \int_{0}^{\frac{\pi}{4}} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-r^{2} \cos ^{2} \theta}} r d z d r d \theta \\
& =16 \int_{0}^{\frac{\pi}{4}} \int_{0}^{a} \sqrt{a^{2}-r^{2} \cos ^{2} \theta} r d r d \theta \\
& =\frac{16}{3} \int_{0}^{\frac{\pi}{4}}\left(-\left.\frac{\left(a^{2}-r^{2} \cos ^{2} \theta\right)^{\frac{3}{2}}}{\cos ^{2} \theta}\right|_{r=0} ^{a} d \theta\right. \\
& =\frac{16}{3} \int_{0}^{\frac{\pi}{4}} \frac{1-\sin ^{3} \theta}{\cos ^{2} \theta} d \theta \\
& =\frac{16}{3}\left(\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos ^{2} \theta} d \theta-\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{3} \theta}{\cos ^{2} \theta} d \theta\right) \\
& =\frac{16}{3}\left(\left(\left.\tan \theta\right|_{\theta=0} ^{\frac{\pi}{4}}+\int_{\frac{\sqrt{2}}{2}}^{1} \frac{t^{2}-1}{t^{2}} d t\right)\right. \\
& =\frac{16}{3}\left(1+\int_{\frac{\sqrt{2}}{2}}^{1} 1-\frac{1}{t^{2}} d t\right) \\
& =\frac{16}{3}\left(1+\left(\left.t\right|_{t=\frac{\sqrt{2}}{2}} ^{1}+\left(\left.\frac{1}{t}\right|_{t=\frac{\sqrt{2}}{2}} ^{1}\right)\right.\right. \\
& =\frac{16}{3}\left(1+1-\frac{\sqrt{2}}{2}+1-\sqrt{2}\right) \\
& =(16-8 \sqrt{2}) a^{3}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

