SECOND PRACTICE MIDTERM MATH 18.022, MIT, AUTUMN 10

You have 50 minutes. This test is closed book, closed notes, no calculators.
Name: \qquad
Signature: \qquad
Recitation Time: \qquad
There are 5 problems, and the total number of points is 100 . Show all your work. Please make your work as clear and easy to follow as possible.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

1. (20pts) Find a recursive formula for a sequence of points $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, whose limit $\left(x_{\infty}, y_{\infty}\right)$, if it exists, is a point of intersection of the curves

$$
\begin{aligned}
x^{2}-y^{2} & =1 \\
x^{2}(x+1) & =y^{2} .
\end{aligned}
$$

2. (20pts) Suppose that $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is differentiable at $P=(3,-2,1)$ with derivative

$$
D F(3,-2,1)=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & -1 & -3
\end{array}\right)
$$

Suppose that $F(3,-2,1)=(1,-3)$. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be the function $f(x, y, z)=\|F(x, y, z)\|$.
(i) Show that the function $f(x, y, z)$ is differentiable at P.
(ii) Find $D f(3,-2,1)$.
(iii) Find the directional derivative of f at P in the direction of $\hat{u}=$ $-\frac{1}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}-\frac{2}{3} \hat{k}$.
3. (20pts) Let $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ be a \mathcal{C}^{1} function. Suppose that

$$
D F(3,1,0,-1)=\left(\begin{array}{cccc}
1 & 3 & 1 & 3 \\
-1 & 2 & -1 & -2
\end{array}\right) .
$$

(a) Show that there is an open subset $U \subset \mathbb{R}^{2}$ containing $(3,1)$ and an open subset $V \subset \mathbb{R}^{2}$ containing $(0,-1)$ such that for all $(x, y) \in U$, the system of equations

$$
F(x, y, z, w)=F(3,1,0,-1),
$$

has the unique solution

$$
(z, w)=\left(f_{1}(x, y), f_{2}(x, y)\right) \quad \text { with } \quad(z, w) \in V
$$

(b) Find the derivative $D f(3,1)$.
4. (20pts) Let $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ be a regular smooth curve parametrised by arclength. Let $a \in I$ and suppose that

$$
\vec{T}(a)=\frac{4}{9} \hat{\imath}-\frac{7}{9} \hat{\imath}-\frac{4}{9} \hat{k}, \quad \vec{B}(a)=\frac{1}{9} \hat{\imath}-\frac{4}{9} \hat{\imath}+\frac{8}{9} \hat{k}, \quad \frac{d \vec{N}}{d s}(a)=\hat{\imath}-2 \hat{\jmath} .
$$

Find:
(i) the unit normal vector $\vec{N}(a)$.
(ii) the curvature $\kappa(a)$.
(iii) the torsion $\tau(a)$.
5. (20pts) Let $\vec{F}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the vector field given by $\vec{F}(x, y)=$ $y \hat{\imath}+x \hat{\jmath}$.
(i) Is \vec{F} a gradient field (that is, is \vec{F} conservative)? Why?
(ii) Is \vec{F} incompressible?
(iii) Find a flow line that passes through the point $(1,0)$.
(iv) Find a flow line that passes through the point (a, b), where $a^{2}>b^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

