Vector lengths

1. Let $\mathbf{A}=\langle 1,2\rangle, \mathbf{B}=\langle 1,-1\rangle$ and $\mathbf{C}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Find the lengths of $\mathbf{A}, \mathbf{A}+\mathbf{B}$ and \mathbf{C}. Answer: Length is just an expression of the Pythagorean theorem. The picture below shows $|\mathbf{A}|=\sqrt{1+2^{2}}=\sqrt{5}$

Likewise $\mathbf{A}+\mathbf{B}=\langle 2,1\rangle \Rightarrow|\mathbf{A}+\mathbf{B}|=\sqrt{5}$. Perhaps, it's surprising that \mathbf{A} and $\mathbf{A}+\mathbf{B}$ can have the same length.

\mathbf{C} is a vector in space, but the length is computed the same way, except there are 3 terms under the radical sign.

$$
|\mathbf{C}|=\sqrt{1+2^{2}+3^{2}}=\sqrt{14} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

