
2. Partial Differentiation 

2A. Functions and Partial Derivatives 

2A-1 In the pictures below, not all of the level curves are labeled. In (c) and (d), the 
picture is the same, but the labelings are different. In more detail: 

b) the origin is the level curve 0; the other two unlabeled level curves are .5 and 1.5; 
c) on the left, two level curves are labeled; the unlabeled ones are 2 and 3; the origin is 

the level curve 0; 

d

a 

d) on the right, two level curves are labeled; the unlabeled ones are −1 and −2; the origin 
is the level curve 1; 

The crude sketches of the graph in the first octant are at the right. 
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2A-2 a) fx = 3x2y − 3y2 , fy = x3 − 6xy + 4y b) zx = 

y
zy −

y2
, = 

c) fx = 3 cos(3x + 2y), fy = 2 cos(3x + 2y) 
2x x 

d) fx = 2xyex 
2 y, fy = x2ex 

2 y e) zx = ln(2x + y) + , zy = 
2x + y 2x + y 

f) fx = 2xz, fy = −2z3 , fz = x2 − 6yz2 

2A-3 a) both sides are mnxm−1yn−1 

b) fx = 
y 

, fxy = (fx)y = 
x − y 

; fy = 
−x 

, fyx = 
−(y − x)

. 
(x + y)2 (x + y)3 (x + y)2 (x + y)3 

c) fx = −2x sin(x2 + y), fxy = (fx)y = −2x cos(x2 + y); 
fy = − sin(x2 + y), fyx = − cos(x2 + y) 2x. · 

d) both sides are f ′ (x)g ′ (y). 

2A-4 (fx)y = ax+6y, (fy)x = 2x+6y; therefore fxy = fyx a = 2. By inspection, 
2 2 

⇔
one sees that if a = 2, f(x, y) = x y + 3xy is a function with the given fx and fy. 

2A-5 

a) wx = aeax sin ay, wxx = a2eax sin ay; 
ax axwy = e a cos ay, wyy = e a2(− sin ay); therefore wyy = −wxx. 

b) We have wx =
2x

, wxx =
2(y2 − x2)

. If we interchange x and y, the function 
x2 + y2 (x2 + y2)2 

w = ln(x2 + y2) remains the same, while wxx gets turned into wyy; since the interchange 
just changes the sign of the right hand side, it follows that wyy = −wxx. 

2B. Tangent Plane; Linear Approximation 

2B-1 a) zx = y2 , zy = 2xy; therefore at (1,1,1), we get zx = 1, zy = 2, so that the 
tangent plane is z = 1 + (x − 1) + 2(y − 1), or z = x + 2y − 2. 

0 

c 
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2. PARTIAL DIFFERENTIATION 1 

b) wx = −y2/x2 , wy = 2y/x; therefore at (1,2,4), we get wx = −4, wy = 4, so 
that the tangent plane is w = 4− 4(x − 1) + 4(y − 2), or w = −4x + 4y. 

x x y
2B-2 a) zx = � = ; by symmetry (interchanging x and y), zy = ; then the 

x2 + y2 z z 

tangent plane is z = z0 + 
x0 y0 x0 

x+ 
y0 

y , since x2

0 +y
0

2 = z
0

2 .(x−x0)+ (y−y0), or z = 
z0 z0 z0 z0 

b) The line is x = x0t, y = y0t, z = z0t; substituting into the equations of the cone 
and the tangent plane, both are satisfied for all values of t; this shows the line lies on both 
the cone and tangent plane (this can also be seen geometrically). 

2B-3 Letting x, y, z be respectively the lengths of the two legs and the hypotenuse, we 

have z = x2 + y2; thus the calculation of partial derivatives is the same as in 2B-2, and 
3 4 7 

we get Δz ≈ Δx + Δy. Taking Δx = Δy = .01, we get Δz ≈ (.01) = .014. 
5 5 5

R1R2
2B-4 From the formula, we get R = . From this we calculate 

R1 + R2 
� �2 � �2

∂R R2 ∂R R1 
= , and by symmetry, = . 

∂R1 R1 + R2 ∂R2 R1 + R2 
4 1 

Substituting R1 = 1, R2 = 2 the approximation formula then gives ΔR = ΔR1 + ΔR2. 
9 9 

4 1 5 
By hypothesis, ΔRi .1, for i = 1, 2, so that ΔR| | ≤ | | ≤

9
(.1) + 

9
(.1) =

9
(.1) ≈ .06; thus 

2 
R = = .67 ± .06. 

3 

2B-5 a) We have f(x, y) = (x+y+2)2 , fx = 2(x+y+2), fy = 2(x+y+2). Therefore 

at (0, 0), fx(0, 0) = fy(0, 0) = 4, f(0, 0) = 4; linearization is 4 + 4x + 4y; 

at (1, 2), fx(1, 2) = fy(1, 2) = 10, f(1, 2) = 25; 
linearization is 10(x − 1) + 10(y − 2) + 25, or 10x + 10y − 5. 

b) f = ex cos y; fx = ex cos y; fy = −ex sin y . 

linearization at (0, 0): 1 + x; linearization at (0, π/2): −(y − π/2) 

∂V ∂V ∂V ∂V 
2B-6 We have V = πr2h, = 2πrh, = πr2; ΔV ≈ Δr + Δh. 

∂r ∂h ∂r ∂h 
0 0 

Evaluating the partials at r = 2, h = 3, we get 

ΔV ≈ 12πΔr + 4πΔh. 

Assuming the same accuracy Δr ≤ ǫ, Δh ≤ ǫ for both measurements, we get | | | |
1 |ΔV | ≤ 12π ǫ+ 4π ǫ = 16π ǫ, which is < .1 if ǫ < 

160π
< .002 . 

� y ∂r x ∂r y
2B-7 We have r = x2 + y2 , θ = tan−1 ; = , = . 

x ∂x r ∂y r 

Therefore at (3, 4), r = 5, and Δr ≈ 3

5 Δx + 4
5 Δy. If |Δx| and |Δy| are both ≤ .01, then 

|Δr| ≤ 3 4 7 
5 |Δx|+ 

5 |Δy| = 
5 (.01) = .014 (or .02). 

Similarly, 
∂θ 

= 
−y 

; 
∂θ 

= 
x 

, so at the point (3, 4), 
∂x x2 + y2 ∂y x2 + y2 
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2 S. 18.02 SOLUTIONS TO EXERCISES 

|Δθ| ≤ |−4 3 7Δx + Δy (.01) = .0028 (or .003). 
25 | |

25 25 | ≤ 
Since at (3, 4) we have |ry| > |rx|, r is more sensitive there to changes in y; by analogous 

reasoning, θ is more sensitive there to x. 

2B-9 a) w = x2(y + 1); wx = 2x(y + 1) = 2 at (1, 0), and wy = x2 = 1 at (1, 0); therefore 
w is more sensitive to changes in x around this point. 

b) To first order approximation, Δw ≈ 2Δx + Δy, using the above values of the 
partial derivatives. 

If we want Δw = 0, then by the above, 2Δx +Δy = 0, or Δy/Δx = −2 . 

2C. Differentials; Approximations 

dx dy dz 
2 32C-1 a) dw = + + b) dw = 3x y2z dx + 2x3yz dy + x y2dz 

x y z


c) dz =
2y dx− 2x dy 

d) dw = 
t du − u dt


(x + y)2 t
√
t2 u2
−

2C-2 The volume is V = xyz; so dV = yz dx+ xz dy + xy dz. For x = 5, y = 10, z = 20, 

ΔV ≈ dV = 200 dx+ 100 dy + 50 dz, 

from which we see that |ΔV | ≤ 350(.1); therefore V = 1000± 35. 

2C-3 a) A = 1
2 ab sin θ. Therefore, dA = 1

2 (b sin θ da+ a sin θ db+ ab cos θ dθ). 

(2 da+ 1 db+ 1 2b) dA = 
2

1

2

1 
2

1 
2

1 
√
3 dθ) = 1

2 
1

2 db+ 
√
3 dθ); (da+· · · · 

therefore most sensitive to θ, least senstitive to b, since dθ and db have respectively the 
largest and smallest coefficients. 

c) dA = 
2

1 
2

1(.02 + .01 + 1.73(.02) ≈ (.065) ≈ .03 

kT k kT 
2C-4 a) P = ; therefore dP = 

2 
dT − dV 

V V V


b) V dP + P dV = k dT ; therefore dP = 
k dT − P dV 

.

V


c) Substituting P = kT/V into (b) turns it into (a).


dw dt du dv 
2 dt du dv 

2C-5 a) −
w2 

= −
t2 

−
u2 

−
v2 

; therefore dw = w
t2 

+ 
u2 

+ 
v2 

. 

u du + 2v dv 
b) 2u du + 4v dv + 6w dw = 0; therefore dw = .− 

3w 

2D. Gradient; Directional Derivative 

2D-1 a) ∇f = 3x2 i + 6y2 j ; (∇f)P = 3 i + 6 j ; 
ds 

· √
2 

− 
2 

df �
� = (3 i + 6 j )

i − j 
=

3
√
2 

u 

b) ∇w = 
y x xy 

k ; − i+2 j+2k ; 
dw � i + 2 j − 2k 1 

= = 
z 
i+ 

z 
j−

z2 
(∇w)P = 

ds � 
(∇w)P · 

3 
−
3 

u 

c) ∇z = (sin y − y sinx) i + (x cos y + cosx) j ; (∇z)P = i + j ; 
dz 

�

� 

= ( i + j )
−3 i + 4 j 

=
1 

ds 
· 

5 5 
u 



� 

� 

� 

� 

� 

� 

� 

� 

� � 

� 

� 

� 

� 

� 

3 2. PARTIAL DIFFERENTIATION 

2 i + 3 j dw �
� = (2 i + 3 j )

4i− 3 j 
=

1 
d) ∇w =

2t + 3u 
; (∇w)P = 2 i + 3 j ; 

ds 
· 

5 
−
5 

u 

e) ∇f = 2(u + 2v + 3w)( i + 2 j + 3k ); (∇f)P = 4( i + 2 j + 3k ) 
df � −2 i + 2 j − k 4 

ds 
� = 4( i + 2 j + 3k ) · 

3
= −

3 
u 

4 i − 3 j
2D-2 a) ∇w =

4x − 3y 
; (∇w)P = 4 i − 3 j 

dw � 
� = (4 i − 3 j ) u has maximum 5, in the direction u =

4 i − 3 j 
,

ds � 
· 

5 
u 

and minimum −5 in the opposite direction. 
dw � 3 i + 4 j 

� = 0 in the directions ± . 
ds 5 

u 

b) ∇w = 
� 

�y + z, x + z, x + y�; (∇w)P = �1, 3
� 

, 0�; 
dw � 

max 
ds 

� 

u 

√
10 

� 

u 

= −
√
10, direction − i + 3 j 

;� = 
√
10, direction 

i + 3 j 
; min 

dw �
� 

√
10 � ds


dw � + ck

� = 0 in the directions u = ±−3 i + j 

(for all c)
ds 

u 

√
10 + c2 

c) ∇z = 
� 

2 sin(t − u) cos(t − u)( i − j ) = sin 2(
� 

t − u)( i − j ); (∇z)P = i − j ; 
dz � 

max � = 
√
2, direction 

i − j 
; min 

dz 
� = −

√
2, direction −− i + j 

;
ds 

u 

√
2 ds 

u 

√
2 

dz � i + j 

ds 
� = 0 in the directions ± √

2u 

2D-3 a) ∇f = �y2z3 , 2xyz3 , 3xy2z2�; (∇f)P = �4, 12, 36�; normal at P : �1, 3, 9�; 
tangent plane at P : x + 3y + 9z = 18 

b) ∇f = �2x, 8y, 18z�; normal at P : �1, 4, 9�, tangent plane: x + 4y + 9z = 14. 

c) (∇w)P = �2x0, 2y0,−2z0�; tangent plane: x0(x − x0) + y0(y − y0)− z0(z − z0) = 0, 
or x0x + y0y − = 0, since x

0

2 + y
0

2 − z2 = 0. z0z 0


2x i + 2y j 2 i + 4 j

2D-4 a) ∇T = 

x2 + y2 
; (∇T )P = ;

5 
i + 2 j

T is increasing at P most rapidly in the direction of (∇T )P , which is √
5 

. 

2 i + 2 j
b) |∇T | = √

5 
= rate of increase in direction √

5 
. Call the distance to go Δs, then 

2 .2
√
5 

√
5 √

5
Δs = .20 ⇒ Δs = 

2 
=

10 
≈ .22. 

dT � 2 i + 4 j i + j 6 
c) 

ds 
� = (∇T )P · u =

5 
· √

2 
=

5
√
2
; 

u 

6
Δs = .12 Δs =

5
√
2
(.12) ≈ (.10)(

√
2) ≈ .14 

5
√
2 

⇒ 
6 

d) In the directions orthogonal to the gradient: ± 2 i √−
5 

j 
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4 S. 18.02 SOLUTIONS TO EXERCISES 

2D-5 a) isotherms = the level surfaces x2 + 2y2 + 2z2 = c, which are ellipsoids. 

b) ∇T = �2x, 4y, 4z�; (∇T )P = �2, 4, 4�; |(∇T )P | = 6; 
for most rapid decrease, use direction of −(∇T )P : −

3

1 �1, 2, 2� 

c) let Δs be distance to go; then −6(Δs) = −1.2; Δs ≈ .2 

d) 
dT �

� 

(∇T )P �2, 4, 4� �1,−2, 2� 2
; 

2
Δs ≈ .10 Δs ≈ .15. � = u = = 

ds 
· · 

3 3 3 
⇒ 

u 

2D-6 ∇uv = �(uv)x, (uv)y� = �uvx+vux, uvy+vuy� = �uvx, uvy�+�vux+vuy� = u∇v+v∇u 

d(uv) � dv � du � ∇(uv) = u∇v+v∇u ⇒ ∇(uv) ·u = u∇v ·u+v∇u ·u ⇒ 
ds � 

= u
ds �

� +v
ds � 

. 
u u u 

2D-7 At P , let ∇w = a i + b j . Then 

a i + b j · i √+
2 

j 
= 2 ⇒ a + b = 2

√
2 

a i + b j · i √−
2 

j 
= 1 ⇒ a − b = 

√
2 

Adding and subtracting the equations on the right, we get a = 3
2 

√
2, b = 

2 
1 
√
2. 

2D-8 We have P (0, 0, 0) = 32; we wish to decrease it to 31.1 by traveling the shortest 
distance from the origin 0; for this we should travel in the direction of −(∇P )0. 

∇P = �(y + 2)ez , (x + 1)ez , (x + 1)(y + 2)ez�; (∇P )0 = �2, 1, 2�. |(∇P )0| = 3. 

Since (−3) (Δs) = −.9 Δs = .3, we should travel a distance .3 in the direction · ⇒ 
1of −(∇P )0. Since | − �2, 1, 2�| = 3, the distance .3 will be of the distance from (0, 0, 0) 
10 

to (−2,−1,−2), which will bring us to (−.2,−.1,−.2). 

dw � Δw 
2D-9 In these, we use 

ds 
≈ 

Δs 
: we travel in the direction u from a given point P to 

u 
the nearest level curve C; then Δs is the distance traveled (estimate it by using the unit 
distance), and Δw is the corresponding change in w (estimate it by using the labels on the 
level curves). 

a) The direction of ∇f is perpendicular to the level curve at A, in the increasing sense 
(the “uphill” direction). The magnitude of ∇f is the directional derivative in that direction: 

Δw 1 
from the picture, = 2. 

Δs 
≈

.5 

∂w dw � ∂w dw � 
b), c) = , = � , so B will be where i is tangent to the level curve 

∂x ds 
i ∂y ds 

j 
and C where j is tangent to the level curve. 

∂w dw � Δw ∂w dw � Δw 
= =d) At P, 

∂x ds � 
i 

≈ 
Δs 

≈
5

−
/

1

3 
= −.6; 

∂y ds � 
j 

≈ 
Δs 

≈ −
1

1 
= 

dw � Δw 1 
e) If u is the direction of i + j , we have 

ds 
≈ 

Δs 
≈

.5 
= 2 

� 

u 
dw � Δw 

f) If u is the direction of i − j , we have 
ds � 

≈ 
Δs 

≈
5

−
/

1

4 
−.8= 

u 
g) The gradient is 0 at a local extremum point: here at the point 

marked giving the location of the hilltop. 1 

−1. P 

54 

A 

Q 

B 

B 

C C 

1 
2 3 
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2. PARTIAL DIFFERENTIATION 5 

2E. Chain Rule 

2E-1 

dw ∂w dx ∂w dy ∂w dz 
a) (i) = + + = yz 1 + xz 2t + xy 3t2 = t5 + 2t5 + 3t5 = 6t5 

dt ∂x dt ∂y dt ∂z dt 
· · ·


dw 
5
(ii) w = xyz = t6; = 6t

dt


dw ∂w dx ∂w dy

b) (i) = + 

dt ∂x dt ∂y dt 
= 2x(− sin t)− 2y(cos t) = −4 sin t cos t


dw

(ii) w = x2 − y2 = cos2 t − sin2 t = cos 2t; 

dt 
= −2 sin 2t 

dw 2u 2v 
c) (i) = (−2 sin t) + (2 cos t) = − cos t sin t + sin t cos t = 0 

dt u2 + v2 u2 + v2


dw

(ii) w = ln(u2 + v2) = ln(4 cos2 t + 4 sin2 t) = ln 4; = 0. 

dt 

2E-2 a) The value t = 0 corresponds to the point (x(0), y(0)) = (1, 0) = P . 
dw � ∂w � dx � ∂w � dy � 

dt 
0 ∂x P dt 0 ∂y P dt 

� 

0 

= −2 sin t + 3 cos t 
0 

= 3.= 

dw ∂w dx ∂w dy 
2b) = + = y(− sin t) + x(cos t) = − sin2 t + cos t = cos 2t. 

dt ∂x dt ∂y dt


dw π π nπ

= 0 when 2t = + nπ, therefore when t = + . 

dt 2 4 2 

c) t = 1 corresponds to the point (x(1), y(1), z(1)) = (1, 1, 1). 
df � dx � dy � dz � 

� 1= 
dt � 

· 
dt � 

− 1 · 
dt 

�

� 

+ 2 · 
dt �

� = 1 · 1− 1 · 2 + 2 · 3 = 5. 
1 1 1 1 

d) 
df 

2 dx 
3 dy dz 

= 3t4 1 + 2x 3 2t + t2 3t2 = 10t4 .= 3x y + (x + z) + y
dt dt dt dt 

· · · 

dw ∂w du ∂w dv du dv 
2E-3 a) Let w = uv, where u = u(t), v = v(t); = + = v + u . 

dt ∂u dt ∂v dt dt dt 

d(uvw) du dv dw 
2tb) = vw + uw + uv ; e 2t sin t + 2te2t sin t + te cos t 

dt dt dt dt 

2E-4 The values u = 1, v = 1 correspond to the point x = 0, y = 1. At this point, 

∂w ∂w ∂x ∂w ∂y 
= + = 2 2u + 3 v = 2 2 + 3 = 7. 

∂u ∂x ∂u ∂y ∂u 
· · ·


∂w ∂w ∂x ∂w ∂y

= + 

∂v ∂x ∂v ∂y ∂v 
= 2 · (−2v) + 3 · u = 2 · (−2) + 3 · 1 = −1. 

2E-5 a) wr = wxxr + wyyr = wx cos θ + wy sin θ 
wθ = wxxθ + wyyθ = wx(−r sin θ) + wy(r cos θ) 

Therefore, 
(wr)

2 + (wθ/r)
2 

= (wx)
2(cos2 θ + sin2 θ) + (wy)

2(sin2 θ + cos2 θ) + 2wxwy cos θ sin θ − 2wxwy sin θ cos θ 
= (wx)

2 + (wy)
2 . 
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b) The point r = 
√
2, θ = π/4 in polar coordinates corresponds in rectangular coordi

nates to the point x = 1, y = 1. Using the chain rule equations in part (a), 

wr = wx cos θ + wy sin θ; wθ = wx(−r sin θ) + wy(r cos θ) 

but evaluating all the partial derivatives at the point, we get 
1 1 wr = 2 · 
2 

√
2− 1 · 

2 2 

√
2; 

w

r 
θ 
= 2(−

2

1 )
√
2−

2 −
2 

1 
√
2 = 1 

√
2 = 3 

√
2; 

1 
(wr)

2 + (wθ)
2 = 

2

1 
2

9+ = 5; (wx)
2 + (wy)

2 = 22 + (−1)2 = 5. 
r 

2E-6 wu = wx 2u + wy 2v; wv = wx (−2v) + wy 2u, by the chain rule. · · · · 
Therefore 

(wu)
2 + (wv)

2 = [4u2(wx) + 4v2(wy)
2 + 4uvwxwy] + [4v2(wx) + 4u2(wy)

2 − 4uvwxwy] 
= 4(u2 + v2)[(wx)

2 + (wy)
2]. 

2E-7 By the chain rule, fu = fxxu + fyyu, fv = fxxv + fyyv; therefore 

=�fu fv� �fx fy� x
yu
u x

yv
v 

2E-8 a) By the chain rule for functions of one variable, 
∂w 

′ (u)
∂u y 

; 
∂w 

′ (u)
∂u 

′ (u)
1
;

∂x 
= f · 

∂x 
= f ′ (u) · − 

x2 ∂y 
= f · 

∂y 
= f · 

x 
Therefore, 

∂w ∂w y y 
x 
∂x ∂y 

= f ′ (u) · − 
x 
+ f ′ (u) · 

x 
= 0.+ y 

2F. Maximum-minimum Problems 

2F-1 In these, denote by D = x2 +y2 +z2 the square of the distance from the point (x, y, z) 
to the origin; then the point which minimizes D will also minimize the actual distance. 

1 1 
a) Since z2 = , we get on substituting, D = x2 + y2 + . with x and y 

xy xy 
independent; setting the partial derivatives equal to zero, we get 

1 1 
2 1 

2 1 
Dx = 2x −

x2y 
= 0; Dy = 2y −

y2x xy xy 
= 0; or 2x = , 2y = . 

1 
Solving, we see first that x2 =

2xy 
= y 2, from which y = ±x. 

If y = x, then x4 = 
2

1 and x = y = 2−1/4, and so z = 21/4; if y = −x, then x4 = −
2

1 

and there are no solutions. Thus the unique point is (1/21/4 , 1/21/4 , 21/4). 

b) Using the relation x2 = 1+ yz to eliminate x, we have D = 1+ yz+ y2 + z2, with 
y and z independent; setting the partial derivatives equal to zero, we get 

Dy = 2y + z = 0, Dz = 2z + y = 0; 

solving, these equations only have the solution y = z = 0; therefore x = ±1, and there are 
two points: (±1, 0, 0), both at distance 1 from the origin. 

2F-2 Letting x be the length of the ends, y the length of the sides, and z the height, we 
have 

total area of cardboard A = 3xy + 4xz + 2yz, volume V = xyz = 1. 

Eliminating z to make the remaining variables independent, and equating the partials to 
zero, we get 
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4 2 2 4 
A = 3xy + 

y x 
; Ax = 3y −

x2 
= 0, Ay = 3x −

y2 
+ = 0. 

From these last two equations, we get 
2 4 2 4 

3xy = 
x
, 3xy = 

y 
⇒ 

x y 
⇒ y = 2x= 

1 2 1 32/3 3 
3x 3 = 1 x = , y = , z = ⇒ ⇒ 

31/3 31/3 xy 
= 

2 
=

2 31/3 
; · 

therefore the proportions of the most economical box are x : y : z = 1 : 2 : 3
2 . 

2F-5 The cost is C = xy + xz + 4yz + 4xz, where the successive terms represent in turn 
the bottom, back, two sides, and front; i.e., the problem is: 

minimize: C = xy + 5xz + 4yz, with the constraint: xyz = V = 2.5 

Substituting z = V/xy into C, we get 

5V 4V ∂C 4V ∂C 5V 
C = xy + 

y 
+ 

x 
; 

∂x 
= y −

x2 ∂y 
= x −

y2
, . 

We set the two partial derivatives equal to zero and solving the resulting equations simulta
16V 

neously, by eliminating y; we get x 3 = = 8, (using V = 5/2), so x = 2, y = 
2

5 
2

1 , z = . 
5 

2G. Least-squares Interpolation 

2G-1 Find y = mx + b that best fits (1, 1), (2, 3), (3, 2) . 

D = (m + b− 1)2 + (2m + b− 3)2 + (3m + b− 2)2


∂D

= 2(m + b− 1) + 4(2m + b− 3) + 6(3m + b− 2) = 2(14m + 6b− 13) 

∂m


∂D

= 2(m + b− 1) + 2(2m + b− 3) + 2(3m + b− 2) = 2(6m + 3b− 6). 

∂b 

∂D ∂D 
� 

14m + 6b = 13

Thus the equations
 = 0 and = 0 are , whose solution is 

∂m ∂b 6m + 3b = 6 
1 1 m = , b = 1, and the line is y = x + 1 .
2 2 

2G-4 D = 
� 

(a + bxi + cyi − zi)
2 . The equations are i

� 

∂D/∂a = 2(a + bxi + cyi − zi) = 0 
∂D/∂b = 2xi(a + bxi + cyi − zi) = 0 
∂D/∂c = 2yi(a + bxi + cyi − zi) = 0 

Cancel the 2’s; the equations become (on the right, x = [x1, . . . , xn], 1 = [1, . . . , 1], etc.) 

na + ( xi)b + ( yi)c = zi n a + (x 1) b+ (y 1) c = z 1 
� � � � 

· · · 
( xi)a + ( x2 

i )b+ ( xiyi)c = xizi or (x 1) a + (x x) b+ (x y) c = x z 
� � � � 

· · · · 
( yi)a + ( xiyi)b+ ( yi 

2)c = yizi (y 1) a + (x · y )b+ (y · y) c = y · z· 
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2H. Max-min: 2nd Derivative Criterion; Boundary Curves 

2H-1 

a) fx = 0 : 2x − y = 3; fy = 0 : −x − 4y = 3 critical point: (1,−1) 
A = fxx = 2; B = fxy = −1; C = fyy = −4; AC −B2 = −9 < 0; saddle point 

b) fx = 0 : 6x + y = 1; fy = 0 : x + 2y = 2 critical point: (0, 1) 
A = fxx = 6; B = fxy = 1; C = fyy = 2; AC −B2 = 11 > 0; local minimum 

c) fx = 0 : 8x3 − y = 0; fy = 0 : 2y − x = 0; eliminating y, we get 

16x3 − x = 0, or x(16x2 − 1) =

(0

0 

, 0)

⇒ 
, (

x 
1

4 

= 

, 1
8 

0

)

, x 

, (−
= 

1

4

1 

,− 1

8 ). 

− 1 , giving the critical points , x = 
4 4 

Since fxx = 24x2 , fxy = −1, fyy = 2, we get for the three points respectively: 

(0, 0) : Δ = −1 (saddle); (
4

1 , 
8

1 ) : Δ = 2 (minimum); (−
4

1 ,−
8

1 ) : Δ = 2 (minimum) 

d) fx = 0 : 3x2 − 3y = 0; fy = 0 : −3x + 3y2 = 0. Eliminating y gives 

−x + x4 = 0, or x(x3 − 1) = 0 ⇒ x = 0, y = 0 or x = 1, y = 1. 

Since fxx = 6x, fxy = −3, fyy = 6y, we get for the two critical points respectively: 

(0, 0) : AC −B2 = −9 (saddle); (1, 1) : AC −B2 = 27 (minimum) 

e) fx = 0 : 3x2(y3 + 1) = 0; fy = 0 : 3y2(x3 + 1) = 0; solving simultaneously, 
we get from the first equation that either x = 0 or y = −1; finding in each case the other 
coordinate then leads to the two critical points (0, 0) and (−1,−1). 

Since fxx = 6x(y3 + 1), fxy = 3x2 3y2 , fyy = 6y(x3 + 1) , we have ·

(−1,−1) : AC −B2 = −9 (saddle); (0, 0) : AC −B2 = 0, test fails.


(By studying the behavior of f(x, y) on the lines y = mx, for different values of m, it is 
possible to see that also (0, 0) is a saddle point.) 

2H-3 The region R has no critical points; namely, the equations fx = 0 and fy = 0 are 

2x + 2 = 0, 2y + 4 = 0 x = −1, y = −2, ⇒ 

but this point is not in R. We therefore investigate the diagonal boundary of R, using the 
parametrization x = t, y = −t. Restricted to this line, f(x, y) becomes a function of t alone, 
which we denote by g(t), and we look for its maxima and minima. 

g(t) = f(t,−t) = 2t2 − 4t − 1; g ′ (t) = 4t − 2, which is 0 at t = 1/2. 

This point is evidently a minimum for g(t); there is no maximum: g(t) tends to∞. Therefore 
for f(x, y) on R, the minimum occurs at the point (1/2,−1/2), and there is no maximum; 
f(x, y) tends to infinity in different directions in R. 
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2H-4 We have fx = y − 1, fy = x − 1, so the only critical point is at (1, 1). 

a) On the two sides of the boundary, the function f(x, y) becomes respectively 

y = 0 : f(x, y) = −x + 2; x = 0 : f(x, y) = −y + 2. 

Since the function is linear and decreasing on both sides, it has no minimum points (infor
mally, the minimum is −∞). Since f(1, 1) = 1 and f(x, x)
the maximum of f on the first quadrant is ∞. 

= x2 − 2x + 2 → ∞ as x → ∞, 

b) Continuing the reasoning of (a) to find the maximum and minimum points of f(x, y) 
on the boundary, on the other two sides of the boundary square, the function f(x, y) becomes 

y = 2 : f(x, y) = x x = 2 : f(x, y) = y x 
2 

Since f(x, y) is thus increasing or decreasing on each of the four sides, the 
ymaximum and minimum points on the boundary square R can only occur 2 -y 

at the four corner points; evaluating f(x, y) at these four points, we find 

2 -x 2f(0, 0) = 2; f(2, 2) = 2; f(2, 0) = 0; f(0, 2) = 0. 

As in (a), since f(1, 1) = 1, 

maximum points of f on R: (0, 0) and (2, 2); minimum points: (2, 0) and (0, 2). 

c) The data indicates that (1, 1) is probably a saddle point. Confirming this, we have 
fxx = 0, fxy = 1, fyy = 0 for all x and y; therefore AC −B2 = −1 < 0, so (1, 1) is a saddle 
point, by the 2nd-derivative criterion. 

2H-5 Since f(x, y) is linear, it will not have critical points: namely, for all x and y we 

have fx = 1, fy = 
√
3. So any maxima or minima must occur on the boundary circle. 

We parametrize the circle by x = cos θ, y = sin θ; restricted to this boundary circle, 
f(x, y) becomes a function of θ alone which we call g(θ): 

g(θ) = f(cos θ, sin θ) = cos θ + 
√
3 sin θ + 2. 

Proceeding in the usual way to find the maxima and minima of g(θ), we get 

g ′ (θ) = − sin θ + 
√
3 cos θ = 0, or tan θ = 

√
3. 

π 4π 
It follows that the two critical points of g(θ) are θ = and ; evaluating g at these two 

3 3 
points, we get g(π/3) = 4 (the maximum), and g(4π/3) = 0 (the minimum). 

Thus the maximum of f(x, y) in the circular disc R is at (1/2,
√
3/2), while the minimum 

is at (−1/2,−
√
3/2). 

= 0 42H-6 a) Since z 4− x − y, the problem is to find on R the maximum 
and minimum of the total area x y z 

f(x, y) = xy + 1

4
(4− x − y)2 

where R is the triangle given byR : 0 ≤ x, 0 ≤ y, x + y ≤ 4. 

x 

y z 2 

To find the critical points of f(x, y), the equations fx = 0 and fy = 0 are respectively 

y − 1

2
(4− x − y) = 0; x − 1

2
(4− x − y) = 0, 

which imply first that x = y, and from this, x− 1

2
(4−2x); the unique solution is x = 1, y = 1. 
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The region R is a triangle, on whose sides f(x, y) takes respectively the values 

= =1

4

1

4
x)2 (4− y)2bottom: y = 0; f (4−

x(4−
; left side: x = 0; f ; 4 

On the bottom and side, f is decreasing; on the diagonal, f has a maximum at 
x = 2, y = 2. Therefore we need to examine the three corner points and (2, 2) 
as candidates for maximum and minimum points, as well as the critical point 4 

x x4( ) 

( ) 

( ) 

4 x 2 

4 
2 

4 

4
y 

diagonal y = 4− x; f x). = 

(1, 1). We find 

f(0, 0) = 4; f(4, 0) = 0; f(0, 4) = 0; f(2, 2) = 4 f(1, 1) = 2. 

It follows that the critical point is just a saddle point; to get the maximum total area 4, 
make x = y = 0, z = 4, or x = y = 2, z = 0, either of which gives a point “rectangle” and a 
square of side 2; for the minimum total area 0, take for example x = 0, y = 4, z = 0, which 
gives a “rectangle” of length 4 with zero area, and a point square. 

b) We have fxx =
1

2
, fxy =

3

2
, fyy =

1

2
for all x and y; 

(1, 1) is a saddle point, by the 2nd-derivative criterion. 
therefore AC −B2 = −2 < 0, so 

2-2 6x+ 4x 
2 

2H-7 a) fx = 4x − 2y − 2, fy = −2x + 2y; setting these = 0 and solving 2 2 4y +4yy 
simultaneously, we get x = 1, y = 1, which is therefore the only critical point. 

On the four sides of the boundary rectangle R, the function f(x, y) becomes: 2 

= 2x2 + 1; 2−1 : f(x, y) 
0 : 

2 : f(x, y) = 2x − 6x + 4 
− 4y + 4 

on y = 
on x = 

on y = 
1 

2x += y2; 2 : f(x, y) = y2f(x, y) 12on x = 

By one-variable calculus, f(x, y) is increasing on the bottom and decresing on the right side; 
3on the left side it has a minimum at (0 0), and on the top a minimum at (,
2

maximum and minimum points on the boundary rectangle R can only occur at the four 
, 2). Thus the 

corner points, or at (0, 0) or ( 3
2
, 2). At these we find: 

3

2
, 2) = − 1

2
, f(0, 0) = 0.f(0,−1) = 1; f(0, 2) = 4; f(2,−1) = 9; f(2, 2) = 0; f(

At the critical point f(1, 1) = −1; comparing with the above, it is a minimum; therefore, 
maximum point of f(x, y) on R: (2,−1) minimum point of f(x, y) on R: (1, 1) 

b) We have fxx = 4, fxy = −2, fyy = 2 for all x and y; therefore AC −B2 = 4 > 0 and 
A = 4 > 0, so (1, 1) is a minimum point, by the 2nd-derivative criterion. 

2I. Lagrange Multipliers 

2I-1 Letting P : (x, y, z) be the point, in both problems we want to maximize V = xyz,

subject to a constraint f(x, y, z) = c. The Lagrange equations for this, in vector form, are


∇(xyz) = λ · ∇f(x, y, z), f(x, y, z) = c.


a) Here f = c is x + 2y + 3z = 18; equating components, the Lagrange equations become


yz = λ, xz = 2λ, xy = 3λ; x + 2y + 3z = 18.


To solve these symmetrically, multiply the left sides respectively by x, y, and z to make

them equal; this gives 

λx = 2λy = 3λz, or x = 2y = 3z = 6, since the sum is 18. 
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We get therefore as the answer x = 6, y = 3, z = 2. This is a maximum point, since if 
P lies on the triangular boundary of the region in the first octant over which it varies, the 
volume of the box is zero. 

b) Here f = c is x2 + 2y2 + 4z2 = 12; equating components, the Lagrange equations 
become 

yz = λ 2x, xz = λ 4y, xy = λ 8z; x2 + 2y2 + 4z2 = 12. · · · 

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make 
them equal; this gives 

λ 2x2 = λ 4y2 = λ 8z2 , or x2 = 2y2 = 4z2 = 4, since the sum is 12. · · · 

We get therefore as the answer x = 2, y = 
√
2, z = 1. This is a maximum point, since 

if P lies on the boundary of the region in the first octant over which it varies (1/8 of the 
ellipsoid), the volume of the box is zero. 

2 2 3 22I-2 Since we want to minimize x + y + z2, subject to the constraint x y z = 6
√
3, the 

Lagrange multiplier equations are 

2 2 3 3 2 3 22x = λ 3x y z, 2y = λ 2x yz, 2z = λ x y ; x y z = 6
√
3. · · · 

To solve them symmetrically, multiply the first three equations respectively by x, y, and z, 
then divide them through respectively by 3, 2, and 1; this makes the right sides equal, so 
that, after canceling 2 from every numerator, we get 

2 2x y
2= = z ; therefore x = z

√
3, y = z

√
2. 

3 2 

3 2 3 2Substituting into x y z = 6
√
3, we get 3

√
3z 2z z = 6

√
3, which gives as the answer, 

x = 
√
3, y = 

√
2, z = 1. 

· · 

This is clearly a minimum, since if P is near one of the coordinate planes, one of the 
3 2variables is close to zero and therefore one of the others must be large, since x y z = 6

√
3; 

thus P will be far from the origin. 

2I-3 Referring to the solution of 2F-2, we let x be the length of the ends, y the length of 
the sides, and z the height, and get 

total area of cardboard A = 3xy + 4xz + 2yz, volume V = xyz = 1. 

The Lagrange multiplier equations ∇A = λ · ∇(xyz); xyz = 1, then become 

3y + 4z = λyz, 3x + 2z = λxz, 4x + 2y = λxy, xyz = 1. 

To solve these equations for x, y, z, λ, treat them symmetrically. Divide the first equation 
through by yz, and treat the next two equations analogously, to get 

3/z + 4/y = λ, 3/z + 2/x = λ, 4/y + 2/x = λ, 

which by subtracting the equations in pairs leads to 3/z = 4/y = 2/x; setting these all equal 
to k, we get x = 2/k, y = 4/k, z = 3/k, which shows the proportions using least cardboard 
are x : y : z = 2 : 4 : 3. 

To find the actual values of x, y, and z, we set 1/k = m; then substituting into xyz = 1 
gives (2m)(4m)(3m) = 1, from which m3 = 1/24, m = 1/2 31/3, giving finally · 

1 2 3 
x = , y = , z = . 

31/3 31/3 2 31/3 · 
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2I-4 The equations for the cost C and the volume V are xy+4yz+6xz = C and xyz = V . 
The Lagrange multiplier equations for the two problems are 

a) yz = λ(y + 6z), xz = λ(x + 4z), xy = λ(4y + 6x); xy + 4yz + 6xz = 72 

b) y + 6z = µ yz, x + 4z = µ xz, 4y + 6x = µ xy; xyz = 24 · · · 

The first three equations are the same in both cases, since we can set µ = 1/λ. Solving the 
first three equations in (a) symmetrically, we multiply the equations through by x, y, and 
z respectively, which makes the left sides equal; since the right sides are therefore equal, we 
get after canceling the λ, 

xy + 6xz = xy + 4yz = 4yz + 6xz, which implies xy = 4yz = 6xz. 

a) Since the sum of the three equal products is 72, by hypothesis, we get 

xy = 24, yz = 6, xz = 4; 

from the first two we get x = 4z, and from the first and third we get y = 6z, which lead 
to the solution x = 4, y = 6, z = 1. 

b) Dividing xy = 4yz = 6xz by xyz leads after cross-multiplication to x = 4z, y = 6z; 
since by hypothesis, xyz = 24, again this leads to the solution x = 4, y = 6, z = 1. 

2J. Non-independent Variables 

∂w 
2J-1 a) means that x is the dependent variable; get rid of it by writing 

∂y z 
� � 

∂w 
w = (z − y)2 + y2 + z2 = z + z2 . This shows that 

∂y 
= 0. 

z 

∂w 
b) To calculate , once again x is the dependent variable; as in part (a), we 

∂z y 

∂w 
have w = z + z2 and so = 1 + 2z. 

∂z y 

∂x ∂x y
2J-2 a) Differentiating z = x2 + y2 w.r.t. y: 0 = 2x 

∂y 
+ 2y; so 

∂y 
= −

x 
; 

� � � � � � 

z z 

By the chain rule, 
∂w ∂x 

+ 2y = 2x 
−y 

+ 2y = 0.= 2x 
∂y z ∂y z x 

∂x ∂x 1 
Differentiating z = x2 + y2 with respect to z: 1 = 2x ; so = ;

∂z ∂z 2x y y 

∂w ∂x 
By the chain rule, = 2x + 2z = 1 + 2z. 

∂z ∂z y y 

b) Using differentials, dw = 2xdx + 2ydy + 2zdz, dz = 2xdx + 2ydy; 
since the independent variables are y and z, we eliminate dx by substracting the second 
equation from the first, which gives dw = 0 dy + (1 + 2z) dz; 

∂w ∂w 
therefore by D2, we get = 0, = 1 + 2z. 

∂y z ∂z y 
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13 2. PARTIAL DIFFERENTIATION 

∂w 
2J-3 a) To calculate , we see that y is the dependent variable; solving for it, we 

∂t x,z 

zt ∂w 
3 ∂y 

2 3 z 2 2 2get y = 
x 
; using the chain rule, 

∂t 
= x 

∂t 
− z = x

x 
− z = x z − z . 

x,z x,z 

∂w xy 
b) Similarly, means that t is the dependent variable; since t = , we 

∂z z x,y 

have by the chain rule, 
∂w 

= −2zt − z 2 ∂t 
= −2zt − z 2 −xy 

= −zt. 
∂z ∂z 

· 
z2 

x,y x,y 

2J-4 The differentials are calculated in equation (4). 

a) Since x, z, t are independent, we eliminate dy by solving the second equation for x dy, 
substituting this into the first equation, and grouping terms: 

dw = 2x2y dx+(x2z−z2)dt+(x2t−2zt)dz, which shows by D2 that 
∂w 

2 2 = x z −z . 
∂t x,z 

b) Since x, y, z are independent, we eliminate dt by solving the second equation for z dt, 
substituting this into the first equation, and grouping terms: 

∂w 
dw = (3x2y − zy)dx+ (x3 − zx)dy − zt dz, which shows by D2 that 

∂z 
= −zt. 

x,y 

∂S ∂T v 
2J-5 a) If pv = nRT , then 

∂p 
= Sp + ST · 

∂p 
= Sp + ST · 

nR 
. 

v v 

∂S ∂p nR 
b) Similarly, we have = ST + Sp = ST + Sp . 

∂T 
· 

∂T 
· 

v v v 

∂w 
2 2 ∂v 

2 22J-6 a) 
∂u 

= 3u − v − u · 2v 
∂u 

= 3u − v − 2uv. 
x x 

∂w ∂v 

∂x 
= −u · 2v 

∂x 
= −2uv. 

u u 

b) dw = (3u2 − v2)du− 2uvdv; du = x dy + y dx; dv = du+ dx; 
for both derivatives, u and x are the independent variables, so we eliminate dv, getting 

dw = (3u2 − v2)du− 2uv(du+ dx) = (3u2 − v2 − 2uv)du− 2uv dx, 
∂w ∂w 

whose coefficients by D2 are and . 
∂u ∂x x u 

2J-7 Since we need both derivatives for the gradient, we use differentials. 
df = 2dx+ dy − 3dz at P ; dz = 2x dx + dy = 2 dx+ dy at P ; 

the independent variables are to be x and z, so we eliminate dy, getting 
df = 0 dx− 2 dz at the point (x, z) = (1, 1). So ∇g = �0,−2� at (1, 1). 

∂w 
2J-8 To calculate , note that r and θ are independent. Therefore, 

∂r 
� � � 

θ 
� � � 

∂w ∂w ∂w ∂x ∂x 
= + . Now, x = r cos θ, so = cos θ . Therefore 

∂r ∂r ∂x 
· 

∂r ∂r 
� � 

θ θ θ 
∂w r x cos θ 

∂r θ 

= √
r2 x2 

+ √
r2 

−x

x2 
· cos θ = 

r √−
r2 x2− − −
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r − r cos2 θ r sin2 θ 
= = = sin θ . 

r| sin θ| r| sin θ| | |

2K. Partial Differential Equations 

2K-1 w = 1 ln(x2 + y2). If (x, y) = (0, 0), then 
2 �

2 2∂ ∂ x 
= 

y − x
,wxx = (wx) = 

∂x ∂x x2 + y2 (x2 + y2)2 

∂ ∂ y 
= 

x2 − y2 

,wyy = 
∂y

(wy) = 
∂y x2 + y2 (x2 + y2)2 

Therefore w satisfies the two-dimensional Laplace equation, wxx +wyy = 0; we exclude the 
point (0, 0) since ln 0 is not defined. 

∂ ∂ � � 

2K-2 If w = (x2 + y2 + z2)n , then (wx) = 2x n(x 2 + y 2 + z 2)n−1 

∂x ∂x 
· 

= 2n(x2 + y2 + z2)n−1 + 4x2n(n − 1)(x2 + y2 + z2)n−2 

We get wyy and wzz by symmetry; adding and combining, we get 

wxx + wyy + wzz = 6n(x2 + y2 + z2)n−1 + 4(x2 + y2 + z2)n(n − 1)(x2 + y2 + z2)n−2 

= 2n(2n + 1)(x2 + y2 + z2)n−1 , which is identically zero if n = 0, or if n = −1/2. 

2K-3 a) w = ax2 + bxy + cy2; wxx = 2a, wyy = 2c. 

wxx + wyy = 0 2a + 2c = 0, or c = −a.⇒ 
Therefore all quadratic polynomials satisfying the Laplace equation are of the form 

ax2 + bxy − ay2 = a(x2 − y2) + bxy; 
i.e., linear combinations of the two polynomials f(x, y) = x2 − y2 and g(x, y) = xy . 

1 
2K-4 The one-dimensional wave equation is wxx = wtt. So 

c2


w = f(x + ct) + g(x − ct) ⇒ wxx = f ′′ (x + ct) + g ′′ (x − ct)

⇒ wt = cf ′ (x + ct) +−cg ′ (x − ct). 
⇒ wtt = c2f ′′ (x + ct) + c2g ′′ (x − ct) = c2wxx, 

which shows w satisfies the wave equation. 

1 
2K-5 The one-dimensional heat equation is wxx = wt. So if w(x, t) = sin kxert, then 

α2 

wxx = ert k2(− sin kx) = −k2 w. · 
wt = rert sin kx = r w. 

1 
Therefore, we must have −k2w = r w, or r = −α2k2 . 

α2 

However, from the additional condition that w = 0 at x = 1, we must have 

sin k e rt = 0 ; 

Therefore sin k = 0, and so k = nπ, where n is an integer. 

To see what happens to w as t → ∞, we note that since | sin kx| ≤ 1, 

|w| = e rt| sin kx| ≤ e rt . 
Now, if k =� 0, then r = −α2k2 is negative and ert → 0 as t → ∞; therefore |w| → 0. 



15 2. PARTIAL DIFFERENTIATION 

Thus w will be a solution satisfying the given side conditions if k = nπ, where n is a 
non-zero integer, and r = −α2k2 . 
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