2. Partial Differentiation

2A. Functions and Partial Derivatives

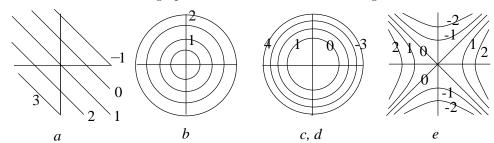
2A-1 In the pictures below, not all of the level curves are labeled. In (c) and (d), the picture is the same, but the labelings are different. In more detail:

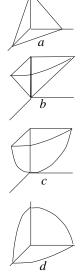
b) the origin is the level curve 0; the other two unlabeled level curves are .5 and 1.5;

c) on the left, two level curves are labeled; the unlabeled ones are 2 and 3; the origin is the level curve 0;

d) on the right, two level curves are labeled; the unlabeled ones are -1 and -2; the origin is the level curve 1;

The crude sketches of the graph in the first octant are at the right.





2A-2 a) $f_x = 3x^2y - 3y^2$, $f_y = x^3 - 6xy + 4y$ b) $z_x = \frac{1}{y}$, $z_y = -\frac{x}{y^2}$ c) $f_x = 3\cos(3x + 2y)$, $f_y = 2\cos(3x + 2y)$ d) $f_x = 2xye^{x^2y}$, $f_y = x^2e^{x^2y}$ e) $z_x = \ln(2x + y) + \frac{2x}{2x + y}$, $z_y = \frac{x}{2x + y}$ f) $f_x = 2xz$, $f_y = -2z^3$, $f_z = x^2 - 6yz^2$

2A-3 a) both sides are $mnx^{m-1}y^{n-1}$

b)
$$f_x = \frac{y}{(x+y)^2}$$
, $f_{xy} = (f_x)_y = \frac{x-y}{(x+y)^3}$; $f_y = \frac{-x}{(x+y)^2}$, $f_{yx} = \frac{-(y-x)}{(x+y)^3}$
c) $f_x = -2x\sin(x^2+y)$, $f_{xy} = (f_x)_y = -2x\cos(x^2+y)$;
 $f_y = -\sin(x^2+y)$, $f_{yx} = -\cos(x^2+y) \cdot 2x$.
d) both sides are $f'(x)g'(y)$.

2A-4 $(f_x)_y = ax + 6y$, $(f_y)_x = 2x + 6y$; therefore $f_{xy} = f_{yx} \Leftrightarrow a = 2$. By inspection, one sees that if a = 2, $f(x, y) = x^2y + 3xy^2$ is a function with the given f_x and f_y .

2A-5

a)
$$w_x = ae^{ax}\sin ay$$
, $w_{xx} = a^2e^{ax}\sin ay$;
 $w_y = e^{ax}a\cos ay$, $w_{yy} = e^{ax}a^2(-\sin ay)$; therefore $w_{yy} = -w_{xx}$.

b) We have $w_x = \frac{2x}{x^2 + y^2}$, $w_{xx} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}$. If we interchange x and y, the function $w = \ln(x^2 + y^2)$ remains the same, while w_{xx} gets turned into w_{yy} ; since the interchange just changes the sign of the right hand side, it follows that $w_{yy} = -w_{xx}$.

2B. Tangent Plane; Linear Approximation

2B-1 a) $z_x = y^2$, $z_y = 2xy$; therefore at (1,1,1), we get $z_x = 1$, $z_y = 2$, so that the tangent plane is z = 1 + (x - 1) + 2(y - 1), or z = x + 2y - 2.

b) $w_x = -y^2/x^2$, $w_y = 2y/x$; therefore at (1,2,4), we get $w_x = -4$, $w_y = 4$, so that the tangent plane is w = 4 - 4(x - 1) + 4(y - 2), or w = -4x + 4y.

2B-2 a) $z_x = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{z}$; by symmetry (interchanging x and y), $z_y = \frac{y}{z}$; then the tangent plane is $z = z_0 + \frac{x_0}{z_0} (x - x_0) + \frac{y_0}{z_0} (y - y_0)$, or $z = \frac{x_0}{z_0} x + \frac{y_0}{z_0} y$, since $x_0^2 + y_0^2 = z_0^2$.

b) The line is $x = x_0 t$, $y = y_0 t$, $z = z_0 t$; substituting into the equations of the cone and the tangent plane, both are satisfied for all values of t; this shows the line lies on both the cone and tangent plane (this can also be seen geometrically).

2B-3 Letting x, y, z be respectively the lengths of the two legs and the hypotenuse, we have $z = \sqrt{x^2 + y^2}$; thus the calculation of partial derivatives is the same as in **2B-2**, and we get $\Delta z \approx \frac{3}{5}\Delta x + \frac{4}{5}\Delta y$. Taking $\Delta x = \Delta y = .01$, we get $\Delta z \approx \frac{7}{5}(.01) = .014$.

2B-4 From the formula, we get $R = \frac{R_1 R_2}{R_1 + R_2}$. From this we calculate

$$\frac{\partial R}{\partial R_1} = \left(\frac{R_2}{R_1 + R_2}\right)^2$$
, and by symmetry, $\frac{\partial R}{\partial R_2} = \left(\frac{R_1}{R_1 + R_2}\right)^2$.

Substituting $R_1 = 1$, $R_2 = 2$ the approximation formula then gives $\Delta R = \frac{4}{9}\Delta R_1 + \frac{1}{9}\Delta R_2$. By hypothesis, $|\Delta R_i| \leq .1$, for i = 1, 2, so that $|\Delta R| \leq \frac{4}{9}(.1) + \frac{1}{9}(.1) = \frac{5}{9}(.1) \approx .06$; thus $R = \frac{2}{3} = .67 \pm .06$.

2B-5 a) We have $f(x, y) = (x+y+2)^2$, $f_x = 2(x+y+2)$, $f_y = 2(x+y+2)$. Therefore at (0,0), $f_x(0,0) = f_y(0,0) = 4$, f(0,0) = 4; linearization is 4 + 4x + 4y; at (1,2), $f_x(1,2) = f_y(1,2) = 10$, f(1,2) = 25; linearization is 10(x-1) + 10(y-2) + 25, or 10x + 10y - 5.

b) $f = e^x \cos y$; $f_x = e^x \cos y$; $f_y = -e^x \sin y$.

linearization at (0,0): 1 + x; linearization at $(0, \pi/2)$: $-(y - \pi/2)$

2B-6 We have $V = \pi r^2 h$, $\frac{\partial V}{\partial r} = 2\pi r h$, $\frac{\partial V}{\partial h} = \pi r^2$; $\Delta V \approx \left(\frac{\partial V}{\partial r}\right)_0 \Delta r + \left(\frac{\partial V}{\partial h}\right)_0 \Delta h$. Evaluating the partials at r = 2, h = 3, we get

 $\Delta V \approx 12\pi\Delta r + 4\pi\Delta h.$

Assuming the same accuracy $|\Delta r| \leq \epsilon$, $|\Delta h| \leq \epsilon$ for both measurements, we get

$$|\Delta V| \le 12\pi \epsilon + 4\pi \epsilon = 16\pi \epsilon$$
, which is $< .1$ if $\epsilon < \frac{1}{160\pi} < .002$

2B-7 We have $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1} \frac{y}{x}$; $\frac{\partial r}{\partial x} = \frac{x}{r}$, $\frac{\partial r}{\partial y} = \frac{y}{r}$.

Therefore at (3,4), r = 5, and $\Delta r \approx \frac{3}{5}\Delta x + \frac{4}{5}\Delta y$. If $|\Delta x|$ and $|\Delta y|$ are both $\leq .01$, then

$$\begin{split} |\Delta r| &\leq \frac{3}{5} |\Delta x| + \frac{4}{5} |\Delta y| = \frac{7}{5} (.01) = .014 \text{ (or } .02) \\ \text{Similarly, } \frac{\partial \theta}{\partial x} = \frac{-y}{x^2 + y^2}; \quad \frac{\partial \theta}{\partial y} = \frac{x}{x^2 + y^2}, \text{ so at the point } (3, 4), \end{split}$$

S. 18.02 SOLUTIONS TO EXERCISES

$$|\Delta \theta| \leq |\frac{-4}{25}\Delta x| + |\frac{3}{25}\Delta y| \leq \frac{7}{25}(.01) = .0028 \text{ (or } .003).$$

Since at (3,4) we have $|r_y| > |r_x|$, r is more sensitive there to changes in y; by analogous reasoning, θ is more sensitive there to x.

2B-9 a) $w = x^2(y+1)$; $w_x = 2x(y+1) = 2$ at (1,0), and $w_y = x^2 = 1$ at (1,0); therefore w is more sensitive to changes in x around this point.

b) To first order approximation, $\Delta w \approx 2\Delta x + \Delta y$, using the above values of the partial derivatives.

If we want $\Delta w = 0$, then by the above, $2\Delta x + \Delta y = 0$, or $\Delta y / \Delta x = -2$.

2C. Differentials; Approximations

2C-1 a)
$$dw = \frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z}$$
 b) $dw = 3x^2y^2z \, dx + 2x^3yz \, dy + x^3y^2dz$
c) $dz = \frac{2y \, dx - 2x \, dy}{(x+y)^2}$ d) $dw = \frac{t \, du - u \, dt}{t\sqrt{t^2 - u^2}}$

2C-2 The volume is V = xyz; so dV = yz dx + xz dy + xy dz. For x = 5, y = 10, z = 20,

$$\Delta V \approx dV = 200 \, dx + 100 \, dy + 50 \, dz,$$

from which we see that $|\Delta V| \leq 350(.1)$; therefore $V = 1000 \pm 35$.

2C-3 a) $A = \frac{1}{2}ab\sin\theta$. Therefore, $dA = \frac{1}{2}(b\sin\theta \, da + a\sin\theta \, db + ab\cos\theta \, d\theta)$. b) $dA = \frac{1}{2}(2 \cdot \frac{1}{2}\, da + 1 \cdot \frac{1}{2}\, db + 1 \cdot 2 \cdot \frac{1}{2}\sqrt{3}\, d\theta) = \frac{1}{2}(da + \frac{1}{2}\, db + \sqrt{3}\, d\theta);$

therefore most sensitive to θ , least sensitive to b, since $d\theta$ and db have respectively the largest and smallest coefficients.

c) $dA = \frac{1}{2}(.02 + .01 + 1.73(.02) \approx \frac{1}{2}(.065) \approx .03$

2C-4 a)
$$P = \frac{kT}{V}$$
; therefore $dP = \frac{k}{V}dT - \frac{kT}{V^2}dV$
b) $V dP + P dV = k dT$; therefore $dP = \frac{k dT - P dV}{V}$.
c) Substituting $P = kT/V$ into (b) turns it into (a).

2C-5 a)
$$-\frac{dw}{w^2} = -\frac{dt}{t^2} - \frac{du}{u^2} - \frac{dv}{v^2};$$
 therefore $dw = w^2 \left(\frac{dt}{t^2} + \frac{du}{u^2} + \frac{dv}{v^2}\right).$
b) $2u \, du + 4v \, dv + 6w \, dw = 0;$ therefore $dw = -\frac{u \, du + 2v \, dv}{3w}.$

2D. Gradient; Directional Derivative

$$\begin{aligned} \mathbf{2D-1} \quad \mathbf{a}) \quad \nabla f &= 3x^2 \,\mathbf{i} + 6y^2 \,\mathbf{j}\,; \quad (\nabla f)_P = 3 \,\mathbf{i} + 6 \,\mathbf{j}\,; \quad \frac{df}{ds}\Big|_{\mathbf{u}} = (3 \,\mathbf{i} + 6 \,\mathbf{j}\,) \cdot \frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}} = -\frac{3\sqrt{2}}{2} \\ \mathbf{b}) \quad \nabla w &= \frac{y}{z} \,\mathbf{i} + \frac{x}{z} \,\mathbf{j} - \frac{xy}{z^2} \,\mathbf{k}\,; \quad (\nabla w)_P = -\mathbf{i} + 2\mathbf{j} + 2\,\mathbf{k}\,; \quad \frac{dw}{ds}\Big|_{\mathbf{u}} = (\nabla w)_P \cdot \frac{\mathbf{i} + 2\,\mathbf{j} - 2\,\mathbf{k}}{3} = -\frac{1}{3} \\ \mathbf{c}) \quad \nabla z = (\sin y - y \sin x) \,\mathbf{i} + (x \cos y + \cos x) \,\mathbf{j}\,; \quad (\nabla z)_P = \mathbf{i} + \mathbf{j}\,; \\ \frac{dz}{ds}\Big|_{\mathbf{u}} = (\mathbf{i} + \mathbf{j}) \cdot \frac{-3\,\mathbf{i} + 4\,\mathbf{j}}{5} = \frac{1}{5} \end{aligned}$$

 $\mathbf{2}$

d)
$$\nabla w = \frac{2\mathbf{i} + 3\mathbf{j}}{2t + 3u}; \qquad (\nabla w)_P = 2\mathbf{i} + 3\mathbf{j}; \qquad \frac{dw}{ds}\Big|_{\mathbf{u}} = (2\mathbf{i} + 3\mathbf{j}) \cdot \frac{4\mathbf{i} - 3\mathbf{j}}{5} = -\frac{1}{5}$$
e)
$$\nabla f = 2(u + 2v + 3w)(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}); \qquad (\nabla f)_P = 4(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \\ \qquad \frac{df}{ds}\Big|_{\mathbf{u}} = 4(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot \frac{-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = -\frac{4}{3}$$
2D-2 a)
$$\nabla w = \frac{4\mathbf{i} - 3\mathbf{j}}{4x - 3y}; \qquad (\nabla w)_P = 4\mathbf{i} - 3\mathbf{j} \\ \qquad \frac{dw}{ds}\Big|_{\mathbf{u}} = (4\mathbf{i} - 3\mathbf{j}) \cdot \mathbf{u} \text{ has maximum 5, in the direction } \mathbf{u} = \frac{4\mathbf{i} - 3\mathbf{j}}{5}, \\ \text{and minimum -5 in the opposite direction.} \\ \qquad \frac{dw}{ds}\Big|_{\mathbf{u}} = 0 \text{ in the directions } \pm \frac{3\mathbf{i} + 4\mathbf{j}}{5}. \end{cases}$$
b)
$$\nabla w = \langle y + z, x + z, x + y \rangle; \qquad (\nabla w)_P = \langle 1, 3, 0 \rangle; \\ \max \frac{dw}{ds}\Big|_{\mathbf{u}} = 0 \text{ in the directions } \pm \frac{\mathbf{i} + 3\mathbf{j}}{\sqrt{10}}; \qquad \min \frac{dw}{ds}\Big|_{\mathbf{u}} = -\sqrt{10}, \text{ direction } -\frac{\mathbf{i} + 3\mathbf{j}}{\sqrt{10}}; \\ \frac{dw}{ds}\Big|_{\mathbf{u}} = 0 \text{ in the directions } \mathbf{u} \pm \frac{-3\mathbf{i} + \mathbf{j} + c\mathbf{k}}{\sqrt{10 + c^2}} \text{ (for all } c)$$
c)
$$\nabla z = 2\sin(t - u)\cos(t - u)(\mathbf{i} - \mathbf{j}) = \sin 2(t - u)(\mathbf{i} - \mathbf{j}); \qquad (\nabla z)_P = \mathbf{i} - \mathbf{j}; \\ \max \frac{dz}{ds}\Big|_{\mathbf{u}} = \sqrt{2}, \text{ direction } \frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}; \qquad \min \frac{dz}{ds}\Big|_{\mathbf{u}} = -\sqrt{2}, \text{ direction } -\frac{-\mathbf{i} + \mathbf{j}}{\sqrt{2}}; \\ \mathbf{2D-3} \text{ a) } \nabla f = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle; \qquad (\nabla f)_P = \langle 4, 12, 36 \rangle; \text{ normal at } P: \langle 1, 3, 9 \rangle; \\ \text{ tangent plane at } P: x + 3y + 9z = 18 \end{cases}$$
b)
$$\nabla f = \langle 2x, 8y, 18z \rangle; \text{ normal at } P: \langle 1, 4, 9 \rangle, \text{ tangent plane: } x + 4y + 9z = 14. \\ \text{c) } (\nabla w)_P = \langle 2x_0, 2y_0, -2z_0 \rangle; \text{ tangent plane: } x_0(x - x_0) + y_0(y - y_0) - z_0(z - z_0) = 0, \\ \text{or } x_0x + y_0y - z_0 z = 0, \text{ since } x_0^2 + y_0^2 - z_0^2 = 0. \end{cases}$$
2D-4 a)
$$\nabla T = \frac{2x\mathbf{i} + 2y\mathbf{j}}{x^2 + y^2}; \qquad (\nabla T)_P = \frac{2\mathbf{i} + 4\mathbf{j}}{5}; \\ T \text{ is increasing at P most rapidly in the direction of } (\nabla T)_P, \text{ which is } \frac{\mathbf{i} + 2\mathbf{j}}{\sqrt{5}}. \end{cases}$$

b)
$$|\nabla T| = \frac{2}{\sqrt{5}} = \text{rate of increase in direction } \frac{\mathbf{i} + 2\mathbf{j}}{\sqrt{5}}$$
. Call the distance to go Δs , then
 $\frac{2}{\sqrt{5}} \Delta s = .20 \quad \Rightarrow \quad \Delta s = \frac{.2\sqrt{5}}{2} = \frac{\sqrt{5}}{10} \approx .22.$

c) $\left. \frac{dT}{ds} \right|_{\mathbf{u}} = (\nabla T)_P \cdot \mathbf{u} = \frac{2\mathbf{i} + 4\mathbf{j}}{5} \cdot \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} = \frac{6}{5\sqrt{2}};$
 $\frac{6}{5\sqrt{2}} \Delta s = .12 \quad \Rightarrow \quad \Delta s = \frac{5\sqrt{2}}{6} (.12) \approx (.10)(\sqrt{2}) \approx .14$

d) In the directions orthogonal to the gradient: $\pm \frac{2\,\mathbf{i} - \mathbf{j}}{\sqrt{5}}$

2D-5 a) isotherms = the level surfaces $x^2 + 2y^2 + 2z^2 = c$, which are ellipsoids.

- b) $\nabla T = \langle 2x, 4y, 4z \rangle; \quad (\nabla T)_P = \langle 2, 4, 4 \rangle; \quad |(\nabla T)_P| = 6;$ for most rapid decrease, use direction of $-(\nabla T)_P: -\frac{1}{3}\langle 1, 2, 2 \rangle$
- c) let Δs be distance to go; then $-6(\Delta s) = -1.2$; $\Delta s \approx .2$
- d) $\left. \frac{dT}{ds} \right|_{\mathbf{u}} = (\nabla T)_P \cdot \mathbf{u} = \langle 2, 4, 4 \rangle \cdot \frac{\langle 1, -2, 2 \rangle}{3} = \frac{2}{3}; \qquad \frac{2}{3} \Delta s \approx .10 \Rightarrow \Delta s \approx .15.$

$$\begin{aligned} \mathbf{2D-6} \ \nabla uv &= \langle (uv)_x, (uv)_y \rangle = \langle uv_x + vu_x, uv_y + vu_y \rangle = \langle uv_x, uv_y \rangle + \langle vu_x + vu_y \rangle = u\nabla v + v\nabla u \\ \nabla (uv) &= u\nabla v + v\nabla u \quad \Rightarrow \quad \nabla (uv) \cdot \mathbf{u} = u\nabla v \cdot \mathbf{u} + v\nabla u \cdot \mathbf{u} \quad \Rightarrow \quad \frac{d(uv)}{ds} \Big|_{\mathbf{u}} = u\frac{dv}{ds} \Big|_{\mathbf{u}} + v\frac{du}{ds} \Big|_{\mathbf{u}}. \end{aligned}$$

$$\mathbf{v}(uv) = u\mathbf{v}v + v\mathbf{v}u \quad \Rightarrow \quad \mathbf{v}(uv) \cdot \mathbf{u} = u\mathbf{v}v \cdot \mathbf{u} + v\mathbf{v}u \cdot \mathbf{u} \quad \Rightarrow \quad \frac{1}{ds} \Big|_{\mathbf{u}} = u\frac{1}{ds}\Big|_{\mathbf{u}}$$

2D-7 At *P*, let $\nabla w = a\mathbf{i} + b\mathbf{i}$. Then

$$a\mathbf{i} + b\mathbf{j} \cdot \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} = 2 \quad \Rightarrow \quad a + b = 2\sqrt{2}$$

 $a\mathbf{i} + b\mathbf{j} \cdot \frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}} = 1 \quad \Rightarrow \quad a - b = \sqrt{2}$

Adding and subtracting the equations on the right, we get $a = \frac{3}{2}\sqrt{2}$, $b = \frac{1}{2}\sqrt{2}$.

2D-8 We have P(0,0,0) = 32; we wish to decrease it to 31.1 by traveling the shortest distance from the origin **0**; for this we should travel in the direction of $-(\nabla P)_{\mathbf{0}}$.

$$\nabla P = \langle (y+2)e^z, (x+1)e^z, (x+1)(y+2)e^z \rangle; \quad (\nabla P)_{\mathbf{0}} = \langle 2, 1, 2 \rangle. \qquad |(\nabla P)_{\mathbf{0}}| = 3.$$

Since $(-3) \cdot (\Delta s) = -.9 \implies \Delta s = .3$, we should travel a distance .3 in the direction of $-(\nabla P)_{\mathbf{0}}$. Since $|-\langle 2, 1, 2 \rangle| = 3$, the distance .3 will be $\frac{1}{10}$ of the distance from (0, 0, 0) to (-2, -1, -2), which will bring us to (-.2, -.1, -.2).

2D-9 In these, we use $\frac{dw}{ds}\Big|_{\mathbf{u}} \approx \frac{\Delta w}{\Delta s}$: we travel in the direction **u** from a given point *P* to the nearest level curve *C*; then Δs is the distance traveled (estimate it by using the unit distance), and Δw is the corresponding change in *w* (estimate it by using the labels on the level curves).

a) The direction of ∇f is perpendicular to the level curve at A, in the increasing sense (the "uphill" direction). The magnitude of ∇f is the directional derivative in that direction: from the picture, $\frac{\Delta w}{\Delta s} \approx \frac{1}{.5} = 2$.

b), c) $\frac{\partial w}{\partial x} = \frac{dw}{ds}\Big|_{\mathbf{i}}, \quad \frac{\partial w}{\partial y} = \frac{dw}{ds}\Big|_{\mathbf{j}},$ so *B* will be where **i** is tangent to the level curve and *C* where **j** is tangent to the level curve.

d) At P,
$$\frac{\partial w}{\partial x} = \frac{dw}{ds}\Big|_{\mathbf{i}} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{5/3} = -.6; \quad \frac{\partial w}{\partial y} = \frac{dw}{ds}\Big|_{\mathbf{j}} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{1} = -1.$$

e) If **u** is the direction of $\mathbf{i} + \mathbf{j}$, we have $\frac{dw}{ds}\Big|_{u} \approx \frac{\Delta w}{\Delta s} \approx \frac{1}{.5} = 2$
f) If **u** is the direction of $\mathbf{i} - \mathbf{j}$, we have $\frac{dw}{ds}\Big|_{u} \approx \frac{\Delta w}{\Delta s} \approx \frac{-1}{.5} = -.8$
g) The gradient is 0 at a local extremum point: here at the point marked giving the location of the hilltop.

2E. Chain Rule

2E-1 a) (i) $\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} = yz \cdot 1 + xz \cdot 2t + xy \cdot 3t^2 = t^5 + 2t^5 + 3t^5 = 6t^5$ (ii) $w = xyz = t^6;$ $\frac{dw}{dt} = 6t^5$ b) (i) $\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} = 2x(-\sin t) - 2y(\cos t) = -4\sin t\cos t$ (ii) $w = x^2 - y^2 = \cos^2 t - \sin^2 t = \cos 2t;$ $\frac{dw}{dt} = -2\sin 2t$ c) (i) $\frac{dw}{dt} = \frac{2u}{u^2 + v^2}(-2\sin t) + \frac{2v}{u^2 + v^2}(2\cos t) = -\cos t\sin t + \sin t\cos t = 0$ (ii) $w = \ln(u^2 + v^2) = \ln(4\cos^2 t + 4\sin^2 t) = \ln 4;$ $\frac{dw}{dt} = 0.$ **2E-2** a) The value t = 0 corresponds to the point (x(0), y(0)) = (1, 0) = P. $\frac{dw}{dt}\Big|_{0} = \frac{\partial w}{\partial x}\Big|_{P}\frac{dx}{dt}\Big|_{0} + \frac{\partial w}{\partial y}\Big|_{P}\frac{dy}{dt}\Big|_{0} = -2\sin t + 3\cos t\Big|_{0} = 3.$ b) $\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial u}\frac{dy}{dt} = y(-\sin t) + x(\cos t) = -\sin^2 t + \cos^2 t = \cos 2t.$ $\frac{dw}{dt} = 0$ when $2t = \frac{\pi}{2} + n\pi$, therefore when $t = \frac{\pi}{4} + \frac{n\pi}{2}$. c) t = 1 corresponds to the point (x(1), y(1), z(1)) = (1, 1, 1). $\frac{df}{dt}\Big|_1 = 1 \cdot \frac{dx}{dt}\Big|_1 - 1 \cdot \frac{dy}{dt}\Big|_1 + 2 \cdot \frac{dz}{dt}\Big|_1 = 1 \cdot 1 - 1 \cdot 2 + 2 \cdot 3 = 5.$ d) $\frac{df}{dt} = 3x^2y\frac{dx}{dt} + (x^3 + z)\frac{dy}{dt} + y\frac{dz}{dt} = 3t^4 \cdot 1 + 2x^3 \cdot 2t + t^2 \cdot 3t^2 = 10t^4.$ **2E-3** a) Let w = uv, where u = u(t), v = v(t); $\frac{dw}{dt} = \frac{\partial w}{\partial u}\frac{du}{dt} + \frac{\partial w}{\partial v}\frac{dv}{dt} = v\frac{du}{dt} + u\frac{dv}{dt}$ b) $\frac{d(uvw)}{dt} = vw\frac{du}{dt} + uw\frac{dv}{dt} + uv\frac{dw}{dt}; \quad e^{2t}\sin t + 2te^{2t}\sin t + te^{2t}\cos t$ **2E-4** The values u = 1, v = 1 correspond to the point x = 0, y = 1. At this point, $\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial u} \frac{\partial y}{\partial u} = 2 \cdot 2u + 3 \cdot v = 2 \cdot 2 + 3 = 7.$ $\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial u}\frac{\partial y}{\partial v} = 2\cdot(-2v) + 3\cdot u = 2\cdot(-2) + 3\cdot 1 = -1.$ **2E-5** a) $w_r = w_x x_r + w_y y_r = w_x \cos \theta + w_y \sin \theta$ $w_\theta = w_x x_\theta + w_y y_\theta = w_x (-r \sin \theta) + w_y (r \cos \theta)$ Therefore. $(w_r)^2 + (w_{\theta}/r)^2$ $= (w_x)^2(\cos^2\theta + \sin^2\theta) + (w_y)^2(\sin^2\theta + \cos^2\theta) + 2w_xw_y\cos\theta\sin\theta - 2w_xw_y\sin\theta\cos\theta$ $= (w_x)^2 + (w_y)^2$.

b) The point $r = \sqrt{2}$, $\theta = \pi/4$ in polar coordinates corresponds in rectangular coordinates to the point x = 1, y = 1. Using the chain rule equations in part (a),

$$w_r = w_x \cos \theta + w_y \sin \theta;$$
 $w_\theta = w_x (-r \sin \theta) + w_y (r \cos \theta)$

but evaluating all the partial derivatives at the point, we get

$$w_r = 2 \cdot \frac{1}{2}\sqrt{2} - 1 \cdot \frac{1}{2}\sqrt{2} = \frac{1}{2}\sqrt{2}; \quad \frac{w_\theta}{r} = 2(-\frac{1}{2})\sqrt{2} - \frac{1}{2}\sqrt{2} = -\frac{3}{2}\sqrt{2};$$
$$(w_r)^2 + \frac{1}{r}(w_\theta)^2 = \frac{1}{2} + \frac{9}{2} = 5; \qquad (w_x)^2 + (w_y)^2 = 2^2 + (-1)^2 = 5.$$

2E-6 $w_u = w_x \cdot 2u + w_y \cdot 2v;$ $w_v = w_x \cdot (-2v) + w_y \cdot 2u,$ by the chain rule. Therefore

$$(w_u)^2 + (w_v)^2 = [4u^2(w_x) + 4v^2(w_y)^2 + 4uvw_xw_y] + [4v^2(w_x) + 4u^2(w_y)^2 - 4uvw_xw_y]$$

= 4(u^2 + v^2)[(w_x)^2 + (w_y)^2].

2E-7 By the chain rule, $f_u = f_x x_u + f_y y_u$, $f_v = f_x x_v + f_y y_v$; therefore $\langle f_u \ f_v \rangle = \langle f_x \ f_y \rangle \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}$

2E-8 a) By the chain rule for functions of one variable,

$$\frac{\partial w}{\partial x} = f'(u) \cdot \frac{\partial u}{\partial x} = f'(u) \cdot -\frac{y}{x^2}; \qquad \frac{\partial w}{\partial y} = f'(u) \cdot \frac{\partial u}{\partial y} = f'(u) \cdot \frac{1}{x};$$

Therefore,

$$x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} = f'(u) \cdot -\frac{y}{x} + f'(u) \cdot \frac{y}{x} = 0.$$

2F. Maximum-minimum Problems

2F-1 In these, denote by $D = x^2 + y^2 + z^2$ the square of the distance from the point (x, y, z) to the origin; then the point which minimizes D will also minimize the actual distance.

a) Since $z^2 = \frac{1}{xy}$, we get on substituting, $D = x^2 + y^2 + \frac{1}{xy}$. with x and y independent; setting the partial derivatives equal to zero, we get

$$D_x = 2x - \frac{1}{x^2y} = 0;$$
 $D_y = 2y - \frac{1}{y^2x} = 0;$ or $2x^2 = \frac{1}{xy},$ $2y^2 = \frac{1}{xy}$

Solving, we see first that $x^2 = \frac{1}{2xy} = y^2$, from which $y = \pm x$.

If y = x, then $x^4 = \frac{1}{2}$ and $x = y = 2^{-1/4}$, and so $z = 2^{1/4}$; if y = -x, then $x^4 = -\frac{1}{2}$ and there are no solutions. Thus the unique point is $(1/2^{1/4}, 1/2^{1/4}, 2^{1/4})$.

b) Using the relation $x^2 = 1 + yz$ to eliminate x, we have $D = 1 + yz + y^2 + z^2$, with y and z independent; setting the partial derivatives equal to zero, we get

$$D_y = 2y + z = 0, \quad D_z = 2z + y = 0;$$

solving, these equations only have the solution y = z = 0; therefore $x = \pm 1$, and there are two points: $(\pm 1, 0, 0)$, both at distance 1 from the origin.

2F-2 Letting x be the length of the ends, y the length of the sides, and z the height, we have

total area of cardboard A = 3xy + 4xz + 2yz, volume V = xyz = 1.

Eliminating z to make the remaining variables independent, and equating the partials to zero, we get

$$A = 3xy + \frac{4}{y} + \frac{2}{x}; \qquad A_x = 3y - \frac{2}{x^2} = 0, \quad A_y = 3x - \frac{4}{y^2} = 0$$

From these last two equations, we get

$$3xy = \frac{2}{x}, \quad 3xy = \frac{4}{y} \quad \Rightarrow \quad \frac{2}{x} = \frac{4}{y} \quad \Rightarrow \quad y = 2x$$

$$\Rightarrow \quad 3x^3 = 1 \quad \Rightarrow \quad x = \frac{1}{3^{1/3}}, \quad y = \frac{2}{3^{1/3}}, \quad z = \frac{1}{xy} = \frac{3^{2/3}}{2} = \frac{3}{2 \cdot 3^{1/3}}$$

therefore the proportions of the most economical box are $x: y: z = 1: 2: \frac{3}{2}$.

2F-5 The cost is C = xy + xz + 4yz + 4xz, where the successive terms represent in turn the bottom, back, two sides, and front; i.e., the problem is:

minimize: C = xy + 5xz + 4yz, with the constraint: xyz = V = 2.5

Substituting z = V/xy into C, we get

$$C = xy + \frac{5V}{y} + \frac{4V}{x}; \qquad \frac{\partial C}{\partial x} = y - \frac{4V}{x^2}, \quad \frac{\partial C}{\partial y} = x - \frac{5V}{y^2}$$

We set the two partial derivatives equal to zero and solving the resulting equations simultaneously, by eliminating y; we get $x^3 = \frac{16V}{5} = 8$, (using V = 5/2), so x = 2, $y = \frac{5}{2}$, $z = \frac{1}{2}$.

2G. Least-squares Interpolation

2G-1 Find y = mx + b that best fits (1, 1), (2, 3), (3, 2).

$$D = (m+b-1)^2 + (2m+b-3)^2 + (3m+b-2)^2$$

$$\frac{\partial D}{\partial m} = 2(m+b-1) + 4(2m+b-3) + 6(3m+b-2) = 2(14m+6b-13)$$

$$\frac{\partial D}{\partial b} = 2(m+b-1) + 2(2m+b-3) + 2(3m+b-2) = 2(6m+3b-6).$$

Thus the equations $\frac{\partial D}{\partial m} = 0$ and $\frac{\partial D}{\partial b} = 0$ are $\begin{cases} 14m + 6b = 13\\ 6m + 3b = 6 \end{cases}$, whose solution is $m = \frac{1}{2}, \ b = 1$, and the line is $y = \frac{1}{2}x + 1$.

2G-4 $D = \sum_{i} (a + bx_i + cy_i - z_i)^2$. The equations are $\frac{\partial D}{\partial a} = \sum_{i} 2(a + bx_i + cy_i - z_i) = 0$ $\frac{\partial D}{\partial b} = \sum_{i} 2x_i(a + bx_i + cy_i - z_i) = 0$ $\frac{\partial D}{\partial c} = \sum_{i} 2y_i(a + bx_i + cy_i - z_i) = 0$

Cancel the 2's; the equations become (on the right, $\mathbf{x} = [x_1, \dots, x_n], \mathbf{1} = [1, \dots, 1]$, etc.)

$$na + (\sum x_i)b + (\sum y_i)c = \sum z_i \qquad n \ a + (\mathbf{x} \cdot \mathbf{1}) \ b + (\mathbf{y} \cdot \mathbf{1}) \ c = \mathbf{z} \cdot \mathbf{1}$$

$$(\sum x_i)a + (\sum x_i^2)b + (\sum x_iy_i)c = \sum x_iz_i \qquad \text{or} \qquad (\mathbf{x} \cdot \mathbf{1}) \ a + (\mathbf{x} \cdot \mathbf{x}) \ b + (\mathbf{x} \cdot \mathbf{y}) \ c = \mathbf{x} \cdot \mathbf{z}$$

$$(\sum y_i)a + (\sum x_iy_i)b + (\sum y_i^2)c = \sum y_iz_i \qquad (\mathbf{y} \cdot \mathbf{1}) \ a + (\mathbf{x} \cdot \mathbf{y}) \ b + (\mathbf{y} \cdot \mathbf{y}) \ c = \mathbf{y} \cdot \mathbf{z}$$

2H. Max-min: 2nd Derivative Criterion; Boundary Curves

2H-1

a)
$$f_x = 0: 2x - y = 3;$$
 $f_y = 0: -x - 4y = 3$ critical point: $(1, -1)$
 $A = f_{xx} = 2;$ $B = f_{xy} = -1;$ $C = f_{yy} = -4;$ $AC - B^2 = -9 < 0;$ saddle point

- b) $f_x = 0$: 6x + y = 1; $f_y = 0$: x + 2y = 2 critical point: (0, 1) $A = f_{xx} = 6$; $B = f_{xy} = 1$; $C = f_{yy} = 2$; $AC - B^2 = 11 > 0$; local minimum
- c) $f_x = 0$: $8x^3 y = 0$; $f_y = 0$: 2y x = 0; eliminating y, we get $16x^3 - x = 0$, or $x(16x^2 - 1) = 0 \Rightarrow x = 0$, $x = \frac{1}{4}$, $x = -\frac{1}{4}$, giving the critical points (0, 0), $(\frac{1}{4}, \frac{1}{8})$, $(-\frac{1}{4}, -\frac{1}{8})$.

Since $f_{xx} = 24x^2$, $f_{xy} = -1$, $f_{yy} = 2$, we get for the three points respectively:

 $(0,0): \Delta = -1 \text{ (saddle)}; \quad (\frac{1}{4}, \frac{1}{8}): \Delta = 2 \text{ (minimum)}; \quad (-\frac{1}{4}, -\frac{1}{8}): \Delta = 2 \text{ (minimum)}$

d) $f_x = 0$: $3x^2 - 3y = 0$; $f_y = 0$: $-3x + 3y^2 = 0$. Eliminating y gives $-x + x^4 = 0$, or $x(x^3 - 1) = 0 \implies x = 0$, y = 0 or x = 1, y = 1. Since $f_{xx} = 6x$, $f_{xy} = -3$, $f_{yy} = 6y$, we get for the two critical points respectively: (0,0): $AC - B^2 = -9$ (saddle); (1,1): $AC - B^2 = 27$ (minimum)

e) $f_x = 0$: $3x^2(y^3 + 1) = 0$; $f_y = 0$: $3y^2(x^3 + 1) = 0$; solving simultaneously, we get from the first equation that either x = 0 or y = -1; finding in each case the other coordinate then leads to the two critical points (0,0) and (-1,-1).

Since
$$f_{xx} = 6x(y^3 + 1)$$
, $f_{xy} = 3x^2 \cdot 3y^2$, $f_{yy} = 6y(x^3 + 1)$, we have
 $(-1, -1): AC - B^2 = -9$ (saddle); $(0, 0): AC - B^2 = 0$, test fails.

(By studying the behavior of f(x, y) on the lines y = mx, for different values of m, it is possible to see that also (0, 0) is a saddle point.)

2H-3 The region R has no critical points; namely, the equations $f_x = 0$ and $f_y = 0$ are

$$2x + 2 = 0$$
, $2y + 4 = 0 \Rightarrow x = -1$, $y = -2$,

but this point is not in R. We therefore investigate the diagonal boundary of R, using the parametrization x = t, y = -t. Restricted to this line, f(x, y) becomes a function of t alone, which we denote by g(t), and we look for its maxima and minima.

$$g(t) = f(t, -t) = 2t^2 - 4t - 1;$$
 $g'(t) = 4t - 2$, which is 0 at $t = 1/2.$

This point is evidently a minimum for g(t); there is no maximum: g(t) tends to ∞ . Therefore for f(x, y) on R, the minimum occurs at the point (1/2, -1/2), and there is no maximum; f(x, y) tends to infinity in different directions in R.

We have $f_x = y - 1$, $f_y = x - 1$, so the only critical point is at (1, 1). 2H-4

a) On the two sides of the boundary, the function f(x, y) becomes respectively

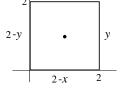
$$y = 0$$
: $f(x, y) = -x + 2$; $x = 0$: $f(x, y) = -y + 2$.

Since the function is linear and decreasing on both sides, it has no minimum points (informally, the minimum is $-\infty$). Since f(1,1) = 1 and $f(x,x) = x^2 - 2x + 2 \to \infty$ as $x \to \infty$, the maximum of f on the first quadrant is ∞ .

b) Continuing the reasoning of (a) to find the maximum and minimum points of f(x,y)on the boundary, on the other two sides of the boundary square, the function f(x, y) becomes

$$y = 2: \quad f(x, y) = x \qquad \qquad x = 2: \quad f(x, y) = y$$

Since f(x, y) is thus increasing or decreasing on each of the four sides, the maximum and minimum points on the boundary square R can only occur at the four corner points; evaluating f(x, y) at these four points, we find



$$f(0,0) = 2;$$
 $f(2,2) = 2;$ $f(2,0) = 0;$ $f(0,2) = 0.$

As in (a), since f(1, 1) = 1,

f(0,0) = 2;

maximum points of
$$f$$
 on R : $(0,0)$ and $(2,2)$; minimum points: $(2,0)$ and $(0,2)$.

c) The data indicates that (1,1) is probably a saddle point. Confirming this, we have $f_{xx} = 0$, $f_{xy} = 1$, $f_{yy} = 0$ for all x and y; therefore $AC - B^2 = -1 < 0$, so (1, 1) is a saddle point, by the 2nd-derivative criterion.

2H-5 Since f(x, y) is linear, it will not have critical points: namely, for all x and y we have $f_x = 1$, $f_y = \sqrt{3}$. So any maxima or minima must occur on the boundary circle.

We parametrize the circle by $x = \cos \theta$, $y = \sin \theta$; restricted to this boundary circle, f(x, y) becomes a function of θ alone which we call $g(\theta)$:

$$g(\theta) = f(\cos\theta, \sin\theta) = \cos\theta + \sqrt{3}\sin\theta + 2.$$

Proceeding in the usual way to find the maxima and minima of $g(\theta)$, we get

$$g'(\theta) = -\sin\theta + \sqrt{3}\cos\theta = 0$$
, or $\tan\theta = \sqrt{3}$.

It follows that the two critical points of $g(\theta)$ are $\theta = \frac{\pi}{3}$ and $\frac{4\pi}{3}$; evaluating g at these two points, we get $g(\pi/3) = 4$ (the maximum), and $g(4\pi/3) = 0$ (the minimum).

Thus the maximum of f(x, y) in the circular disc R is at $(1/2, \sqrt{3}/2)$, while the minimum is at $(-1/2, -\sqrt{3}/2)$.

2H-6 a) Since z = 4 - x - y, the problem is to find on R the maximum and minimum of the total area

$$f(x,y) = xy + \frac{1}{4}(4 - x - y)^2$$

where R is the triangle given by $R: 0 \le x, 0 \le y, x+y \le 4$.

To find the critical points of f(x, y), the equations $f_x = 0$ and $f_y = 0$ are respectively

$$y - \frac{1}{2}(4 - x - y) = 0;$$
 $x - \frac{1}{2}(4 - x - y) = 0,$

which imply first that x = y, and from this, $x - \frac{1}{2}(4-2x)$; the unique solution is x = 1, y = 1.

S. 18.02 SOLUTIONS TO EXERCISES

The region R is a triangle, on whose sides f(x, y) takes respectively the values

bottom:
$$y = 0$$
; $f = \frac{1}{4}(4-x)^2$; left side: $x = 0$; $f = \frac{1}{4}(4-y)^2$;
diagonal $y = 4 - x$; $f = x(4-x)$.

On the bottom and side, f is decreasing; on the diagonal, f has a maximum at x = 2, y = 2. Therefore we need to examine the three corner points and (2, 2) as candidates for maximum and minimum points, as well as the critical point (1, 1). We find

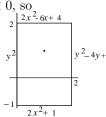
$$f(0,0) = 4;$$
 $f(4,0) = 0;$ $f(0,4) = 0;$ $f(2,2) = 4$ $f(1,1) = 2.$

It follows that the critical point is just a saddle point; to get the maximum total area 4, make x = y = 0, z = 4, or x = y = 2, z = 0, either of which gives a point "rectangle" and a square of side 2; for the minimum total area 0, take for example x = 0, y = 4, z = 0, which gives a "rectangle" of length 4 with zero area, and a point square.

b) We have $f_{xx} = \frac{1}{2}$, $f_{xy} = \frac{3}{2}$, $f_{yy} = \frac{1}{2}$ for all x and y; therefore $AC - B^2 = -2 < 0$, so (1, 1) is a saddle point, by the 2nd-derivative criterion.

2H-7 a) $f_x = 4x - 2y - 2$, $f_y = -2x + 2y$; setting these = 0 and solving simultaneously, we get x = 1, y = 1, which is therefore the only critical point.

On the four sides of the boundary rectangle R, the function f(x, y) becomes: on y = -1: $f(x, y) = 2x^2 + 1$; on y = 2: $f(x, y) = 2x^2 - 6x + 4$ on x = 0: $f(x, y) = y^2$; on x = 2: $f(x, y) = y^2 - 4y + 4$



By one-variable calculus, f(x, y) is increasing on the bottom and decreasing on the right side; on the left side it has a minimum at (0, 0), and on the top a minimum at $(\frac{3}{2}, 2)$. Thus the maximum and minimum points on the boundary rectangle R can only occur at the four corner points, or at (0, 0) or $(\frac{3}{2}, 2)$. At these we find:

$$f(0,-1) = 1;$$
 $f(0,2) = 4;$ $f(2,-1) = 9;$ $f(2,2) = 0;$ $f(\frac{3}{2},2) = -\frac{1}{2},$ $f(0,0) = 0.$

At the critical point f(1,1) = -1; comparing with the above, it is a minimum; therefore, maximum point of f(x,y) on R: (2,-1) minimum point of f(x,y) on R: (1,1)

b) We have $f_{xx} = 4$, $f_{xy} = -2$, $f_{yy} = 2$ for all x and y; therefore $AC - B^2 = 4 > 0$ and A = 4 > 0, so (1, 1) is a minimum point, by the 2nd-derivative criterion.

2I. Lagrange Multipliers

2I-1 Letting P:(x, y, z) be the point, in both problems we want to maximize V = xyz, subject to a constraint f(x, y, z) = c. The Lagrange equations for this, in vector form, are

$$\nabla(xyz) = \lambda \cdot \nabla f(x, y, z), \qquad \qquad f(x, y, z) = c.$$

a) Here f = c is x + 2y + 3z = 18; equating components, the Lagrange equations become

$$yz = \lambda$$
, $xz = 2\lambda$, $xy = 3\lambda$; $x + 2y + 3z = 18$

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make them equal; this gives

$$\lambda x = 2\lambda y = 3\lambda z$$
, or $x = 2y = 3z = 6$, since the sum is 18.

10

We get therefore as the answer x = 6, y = 3, z = 2. This is a maximum point, since if P lies on the triangular boundary of the region in the first octant over which it varies, the volume of the box is zero.

b) Here f = c is $x^2 + 2y^2 + 4z^2 = 12$; equating components, the Lagrange equations become

$$yz = \lambda \cdot 2x$$
, $xz = \lambda \cdot 4y$, $xy = \lambda \cdot 8z$; $x^2 + 2y^2 + 4z^2 = 12$.

To solve these symmetrically, multiply the left sides respectively by x, y, and z to make them equal; this gives

$$\lambda \cdot 2x^2 = \lambda \cdot 4y^2 = \lambda \cdot 8z^2$$
, or $x^2 = 2y^2 = 4z^2 = 4$, since the sum is 12.

We get therefore as the answer x = 2, $y = \sqrt{2}$, z = 1. This is a maximum point, since if P lies on the boundary of the region in the first octant over which it varies (1/8 of the ellipsoid), the volume of the box is zero.

2I-2 Since we want to minimize $x^2 + y^2 + z^2$, subject to the constraint $x^3y^2z = 6\sqrt{3}$, the Lagrange multiplier equations are

$$2x = \lambda \cdot 3x^2y^2z, \quad 2y = \lambda \cdot 2x^3yz, \quad 2z = \lambda \cdot x^3y^2; \quad x^3y^2z = 6\sqrt{3}.$$

To solve them symmetrically, multiply the first three equations respectively by x, y, and z, then divide them through respectively by 3, 2, and 1; this makes the right sides equal, so that, after canceling 2 from every numerator, we get

$$\frac{x^2}{3} = \frac{y^2}{2} = z^2;$$
 therefore $x = z\sqrt{3}, y = z\sqrt{2}.$

Substituting into $x^3y^2z = 6\sqrt{3}$, we get $3\sqrt{3}z^3 \cdot 2z^2 \cdot z = 6\sqrt{3}$, which gives as the answer, $x = \sqrt{3}, y = \sqrt{2}, z = 1$.

This is clearly a minimum, since if P is near one of the coordinate planes, one of the variables is close to zero and therefore one of the others must be large, since $x^3y^2z = 6\sqrt{3}$; thus P will be far from the origin.

2I-3 Referring to the solution of 2F-2, we let x be the length of the ends, y the length of the sides, and z the height, and get

total area of cardboard A = 3xy + 4xz + 2yz, volume V = xyz = 1.

The Lagrange multiplier equations $\nabla A = \lambda \cdot \nabla(xyz)$; xyz = 1, then become

 $3y + 4z = \lambda yz$, $3x + 2z = \lambda xz$, $4x + 2y = \lambda xy$, xyz = 1.

To solve these equations for x, y, z, λ , treat them symmetrically. Divide the first equation through by yz, and treat the next two equations analogously, to get

$$3/z + 4/y = \lambda, \quad 3/z + 2/x = \lambda, \quad 4/y + 2/x = \lambda,$$

which by subtracting the equations in pairs leads to 3/z = 4/y = 2/x; setting these all equal to k, we get x = 2/k, y = 4/k, z = 3/k, which shows the proportions using least cardboard are x : y : z = 2 : 4 : 3.

To find the actual values of x, y, and z, we set 1/k = m; then substituting into xyz = 1 gives (2m)(4m)(3m) = 1, from which $m^3 = 1/24$, $m = 1/2 \cdot 3^{1/3}$, giving finally

$$x = \frac{1}{3^{1/3}}, \quad y = \frac{2}{3^{1/3}}, \quad z = \frac{3}{2 \cdot 3^{1/3}}.$$

2I-4 The equations for the cost C and the volume V are xy+4yz+6xz=C and xyz=V. The Lagrange multiplier equations for the two problems are

a)
$$yz = \lambda(y + 6z), \quad xz = \lambda(x + 4z), \quad xy = \lambda(4y + 6x); \quad xy + 4yz + 6xz = 72$$

b)
$$y + 6z = \mu \cdot yz, \quad x + 4z = \mu \cdot xz, \quad 4y + 6x = \mu \cdot xy; \quad xyz = 24$$

The first three equations are the same in both cases, since we can set $\mu = 1/\lambda$. Solving the first three equations in (a) symmetrically, we multiply the equations through by x, y, and z respectively, which makes the left sides equal; since the right sides are therefore equal, we get after canceling the λ ,

$$xy + 6xz = xy + 4yz = 4yz + 6xz$$
, which implies $xy = 4yz = 6xz$.

a) Since the sum of the three equal products is 72, by hypothesis, we get

$$xy = 24, \quad yz = 6, \quad xz = 4$$

from the first two we get x = 4z, and from the first and third we get y = 6z, which lead to the solution x = 4, y = 6, z = 1.

b) Dividing xy = 4yz = 6xz by xyz leads after cross-multiplication to x = 4z, y = 6z; since by hypothesis, xyz = 24, again this leads to the solution x = 4, y = 6, z = 1.

2J. Non-independent Variables

2J-1 a) $\left(\frac{\partial w}{\partial y}\right)_z$ means that x is the dependent variable; get rid of it by writing $w = (z - y)^2 + y^2 + z^2 = z + z^2$. This shows that $\left(\frac{\partial w}{\partial y}\right)_z = 0$. b) To calculate $\left(\frac{\partial w}{\partial z}\right)_x$, once again x is the dependent variable; as in part (a), we

have $w = z + z^2$ and so $\left(\frac{\partial z}{\partial z}\right)_y^y = 1 + 2z$.

2J-2 a) Differentiating $z = x^2 + y^2$ w.r.t. y: $0 = 2x \left(\frac{\partial x}{\partial y}\right)_z + 2y$; so $\left(\frac{\partial x}{\partial y}\right)_z = -\frac{y}{x}$; By the chain rule, $\left(\frac{\partial w}{\partial y}\right)_z = 2x \left(\frac{\partial x}{\partial y}\right)_z + 2y = 2x \left(\frac{-y}{x}\right) + 2y = 0.$

Differentiating $z = x^2 + y^2$ with respect to z: $1 = 2x \left(\frac{\partial x}{\partial z}\right)_y$; so $\left(\frac{\partial x}{\partial z}\right)_y = \frac{1}{2x}$; By the chain rule, $\left(\frac{\partial w}{\partial z}\right)_y = 2x \left(\frac{\partial x}{\partial z}\right)_y + 2z = 1 + 2z$.

b) Using differentials, dw = 2xdx + 2ydy + 2zdz, dz = 2xdx + 2ydy; since the independent variables are y and z, we eliminate dx by substracting the second equation from the first, which gives dw = 0 dy + (1 + 2z) dz; therefore by **D2**, we get $\left(\frac{\partial w}{\partial y}\right)_z = 0$, $\left(\frac{\partial w}{\partial z}\right)_y = 1 + 2z$.

2. PARTIAL DIFFERENTIATION

2J-3 a) To calculate
$$\left(\frac{\partial w}{\partial t}\right)_{x,z}$$
, we see that y is the dependent variable; solving for it, we get $y = \frac{zt}{x}$; using the chain rule, $\left(\frac{\partial w}{\partial t}\right)_{x,z} = x^3 \left(\frac{\partial y}{\partial t}\right)_{x,z} - z^2 = x^3 \frac{z}{x} - z^2 = x^2 z - z^2$.

b) Similarly,
$$\left(\frac{\partial w}{\partial z}\right)_{x,y}$$
 means that t is the dependent variable; since $t = \frac{xy}{z}$, we have by the chain rule, $\left(\frac{\partial w}{\partial z}\right)_{x,y} = -2zt - z^2 \left(\frac{\partial t}{\partial z}\right)_{x,y} = -2zt - z^2 \cdot \frac{-xy}{z^2} = -zt$.

2J-4 The differentials are calculated in equation (4).

a) Since x, z, t are independent, we eliminate dy by solving the second equation for x dy, substituting this into the first equation, and grouping terms:

$$dw = 2x^2y \, dx + (x^2z - z^2)dt + (x^2t - 2zt)dz, \text{ which shows by } \mathbf{D2} \text{ that } \left(\frac{\partial w}{\partial t}\right)_{x,z} = x^2z - z^2.$$

b) Since x, y, z are independent, we eliminate dt by solving the second equation for z dt, substituting this into the first equation, and grouping terms:

$$dw = (3x^2y - zy)dx + (x^3 - zx)dy - zt dz$$
, which shows by **D2** that $\left(\frac{\partial w}{\partial z}\right)_{x,y} = -zt$.

2J-5 a) If
$$pv = nRT$$
, then $\left(\frac{\partial S}{\partial p}\right)_v = S_p + S_T \cdot \left(\frac{\partial T}{\partial p}\right)_v = S_p + S_T \cdot \frac{v}{nR}$.
b) Similarly, we have $\left(\frac{\partial S}{\partial T}\right)_v = S_T + S_p \cdot \left(\frac{\partial p}{\partial T}\right)_v = S_T + S_p \cdot \frac{nR}{v}$.

2J-6 a)
$$\left(\frac{\partial w}{\partial u}\right)_x = 3u^2 - v^2 - u \cdot 2v \left(\frac{\partial v}{\partial u}\right)_x = 3u^2 - v^2 - 2uv.$$

 $\left(\frac{\partial w}{\partial x}\right)_u = -u \cdot 2v \left(\frac{\partial v}{\partial x}\right)_u = -2uv.$

b) $dw = (3u^2 - v^2)du - 2uvdv;$ du = x dy + y dx; dv = du + dx;for both derivatives, u and x are the independent variables, so we eliminate dv, getting

whose coefficients by **D2** are $\left(\frac{\partial w}{\partial u}\right)_x$ and $\left(\frac{\partial w}{\partial x}\right)_u$.

2J-7 Since we need both derivatives for the gradient, we use differentials.

df = 2dx + dy - 3dz at P; dz = 2x dx + dy = 2 dx + dy at P; the independent variables are to be x and z, so we eliminate dy, getting

 $df = 0 \, dx - 2 \, dz \quad \text{ at the point } (x,z) = (1,1). \quad \text{ So } \ \nabla g = \langle 0,-2 \rangle \ \text{ at } (1,1).$

2J-8 To calculate
$$\left(\frac{\partial w}{\partial r}\right)_{\theta}$$
, note that r and θ are independent. Therefore,
 $\left(\frac{\partial w}{\partial r}\right)_{\theta} = \frac{\partial w}{\partial r} + \frac{\partial w}{\partial x} \cdot \left(\frac{\partial x}{\partial r}\right)_{\theta}$. Now, $x = r\cos\theta$, so $\left(\frac{\partial x}{\partial r}\right)_{\theta} = \cos\theta$. Therefore $\left(\frac{\partial w}{\partial r}\right)_{\theta} = \frac{r}{\sqrt{r^2 - x^2}} + \frac{-x}{\sqrt{r^2 - x^2}} \cdot \cos\theta = \frac{r - x\cos\theta}{\sqrt{r^2 - x^2}}$

S. 18.02 SOLUTIONS TO EXERCISES

$$= \frac{r - r \cos^2 \theta}{r |\sin \theta|} = \frac{r \sin^2 \theta}{r |\sin \theta|} = |\sin \theta|.$$

2K. Partial Differential Equations

2K-1
$$w = \frac{1}{2} \ln(x^2 + y^2)$$
. If $(x, y) \neq (0, 0)$, then
 $w_{xx} = \frac{\partial}{\partial x}(w_x) = \frac{\partial}{\partial x}\left(\frac{x}{x^2 + y^2}\right) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$,
 $w_{yy} = \frac{\partial}{\partial y}(w_y) = \frac{\partial}{\partial y}\left(\frac{y}{x^2 + y^2}\right) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$,

Therefore w satisfies the two-dimensional Laplace equation, $w_{xx} + w_{yy} = 0$; we exclude the point (0,0) since $\ln 0$ is not defined.

2K-2 If
$$w = (x^2 + y^2 + z^2)^n$$
, then $\frac{\partial}{\partial x}(w_x) = \frac{\partial}{\partial x}(2x \cdot n(x^2 + y^2 + z^2)^{n-1})$
= $2n(x^2 + y^2 + z^2)^{n-1} + 4x^2n(n-1)(x^2 + y^2 + z^2)^{n-2}$

We get w_{yy} and w_{zz} by symmetry; adding and combining, we get

$$w_{xx} + w_{yy} + w_{zz} = 6n(x^2 + y^2 + z^2)^{n-1} + 4(x^2 + y^2 + z^2)n(n-1)(x^2 + y^2 + z^2)^{n-2}$$

= $2n(2n+1)(x^2 + y^2 + z^2)^{n-1}$, which is identically zero if $n = 0$, or if $n = -1/2$.
2K-3 a) $w = ax^2 + bxy + cy^2$; $w_{xx} = 2a$, $w_{yy} = 2c$.
 $w_{xx} + w_{yy} = 0 \implies 2a + 2c = 0$, or $c = -a$.

Therefore all quadratic polynomials satisfying the Laplace equation are of the form

 $ax^2 + bxy - ay^2 = a(x^2 - y^2) + bxy;$ i.e., linear combinations of the two polynomials $f(x, y) = x^2 - y^2$ and g(x, y) = xy.

2K-4 The one-dimensional wave equation is $w_{xx} = \frac{1}{c^2} w_{tt}$. So $w = f(x + ct) + g(x - ct) \implies w_{xx} = f''(x + ct) + g''(x - ct)$ $\Rightarrow w_t = cf'(x + ct) + -cg'(x - ct).$ $\Rightarrow w_{tt} = c^2 f''(x + ct) + c^2 g''(x - ct) = c^2 w_{xx},$ which shows w satisfies the wave equation.

2K-5 The one-dimensional heat equation is $w_{xx} = \frac{1}{\alpha^2} w_t$. So if $w(x,t) = \sin kx e^r t$, then $w_{xx} = e^{rt} \cdot k^2 (-\sin kx) = -k^2 w.$ $w_t = re^{rt} \sin kx = r w.$

Therefore, we must have $-k^2w = \frac{1}{\alpha^2}rw$, or $r = -\alpha^2k^2$.

However, from the additional condition that w = 0 at x = 1, we must have

$$\sin k \ e^{rt} = 0 \ ;$$

Therefore $\sin k = 0$, and so $k = n\pi$, where n is an integer.

To see what happens to w as $t \to \infty$, we note that since $|\sin kx| \le 1$,

$$|w| = e^{rt} |\sin kx| \le e^{rt}$$

Now, if $k \neq 0$, then $r = -\alpha^2 k^2$ is negative and $e^{rt} \to 0$ as $t \to \infty$; therefore $|w| \to 0$.

14

Thus w will be a solution satisfying the given side conditions if $k = n\pi$, where n is a non-zero integer, and $r = -\alpha^2 k^2$.

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.