Limits in Iterated Integrals

3. Triple integrals in rectangular and cylindrical coordinates.

You do these the same way, basically. To supply limits for $\iiint_{D} d z d y d x$ over the region D, we integrate first with respect to z. Therefore we

1. Hold x and y fixed, and let z increase. This gives us a vertical line.
2. Integrate from the z-value where the vertical line enters the region D to the z-value where it leaves D.
3. Supply the remaining limits (in either $x y$-coordinates or polar coordinates) so that you include all vertical lines which intersect D. This means that you will be integrating the remaining double integral over the region R in the $x y$-plane which D projects onto.
For example, if D is the region lying between the two paraboloids

$$
z=x^{2}+y^{2} \quad z=4-x^{2}-y^{2}
$$

we get by following steps 1 and 2,

$$
\iiint_{D} d z d y d x=\iint_{R} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d A
$$

where R is the projection of D onto the $x y$-plane. To finish the job, we have to determine what this projection is. From the picture, what we should determine is the $x y$-curve over which the two surfaces intersect. We find this curve by eliminating z from the two equations, getting

$$
\begin{aligned}
& x^{2}+y^{2}=4-x^{2}-y^{2}, \quad \text { which implies } \\
& x^{2}+y^{2}=2
\end{aligned}
$$

Thus the $x y$-curve bounding R is the circle in the $x y$-plane with center at the origin and radius $\sqrt{2}$.

This makes it natural to finish the integral in polar coordinates. We get

$$
\iiint_{D} d z d y d x=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z r d r d \theta
$$

the limits on z will be replaced by r^{2} and $4-r^{2}$ when the integration is carried out.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

