Limits in Iterated Integrals

3. Triple integrals in rectangular and cylindrical coordinates.

You do these the same way, basically. To supply limits for $\iiint_D dz \, dy \, dx$ over the region D, we integrate first with respect to z. Therefore we

1. Hold x and y fixed, and let z increase. This gives us a vertical line.

2. Integrate from the z-value where the vertical line enters the region D to the z-value where it leaves D.

3. Supply the remaining limits (in either xy-coordinates or polar coordinates) so that you include all vertical lines which intersect D. This means that you will be integrating the remaining double integral over the region R in the xy-plane which D projects onto.

For example, if D is the region lying between the two paraboloids

$$z = x^2 + y^2$$
 $z = 4 - x^2 - y^2$,

we get by following steps 1 and 2,

$$\iiint_D dz \, dy \, dx = \iint_R \int_{x^2 + y^2}^{4 - x^2 - y^2} dz \, dA$$

where R is the projection of D onto the xy-plane. To finish the job, we have to determine what this projection is. From the picture, what we should determine is the xy-curve over which the two surfaces intersect. We find this curve by eliminating z from the two equations, getting

$$x^{2} + y^{2} = 4 - x^{2} - y^{2}$$
, which implies
 $x^{2} + y^{2} = 2$.

Thus the xy-curve bounding R is the circle in the xy-plane with center at the origin and radius $\sqrt{2}$.

This makes it natural to finish the integral in polar coordinates. We get

$$\iiint_D dz \, dy \, dx = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_{x^2 + y^2}^{4 - x^2 - y^2} dz \, r \, dr \, d\theta ;$$

the limits on z will be replaced by r^2 and $4 - r^2$ when the integration is carried out.

 $z=x^2+y^2$

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.