Problems: Triple Integrals

1. Set up, but do not evaluate, an integral to find the volume of the region below the plane $z=y$ and above the paraboloid $z=x^{2}+y^{2}$.

Answer: Draw a picture. The plane $z=y$ slices off an thin oblong from the side of the paraboloid. We'll compute the volume of this oblong by integrating vertical strips in the z direction over a region in the $x y$-plane.

To describe the planar region below the volume, we study the curve of intersection of the plane and the paraboloid: $y=x^{2}+y^{2}$. Completing the square gives us $\frac{1}{4}=x^{2}+\left(y-\frac{1}{2}\right)^{2}$. This is the equation of a circle with radius $1 / 2$ about the center $(0,1 / 2)$. (We might also discover this by solving to get $x= \pm \sqrt{y-y^{2}}$ and using a computer graphing utility.)
The most natural set of limits seems to be:
Inner: z from $x^{2}+y^{2}$ to y.
Middle: x from $-\sqrt{y-y^{2}}$ to $\sqrt{y-y^{2}}$.
Outer: y from 0 to 1 .
Thus, Volume $=\int_{0}^{1} \int_{-\sqrt{y-y^{2}}}^{\sqrt{y-y^{2}}} \int_{x^{2}+y^{2}}^{y} 1 d z d x d y$.
2. Use cylindrical coordinates to find the center of mass of the hemisphere shown. (Assume $\delta=1$.)

Answer: By symmetry it's clear $x_{c m}=0$ and $y_{c m}=0$.
$z_{c m}=\frac{1}{M} \iiint_{D} z d m=\frac{1}{M} \iiint_{D} z \delta d V$.
Clearly R is a disc of radius 2 and $M=\frac{16}{3} \pi$.
Limits: inner z : from 0 to $\sqrt{4-x^{2}-y^{2}}=\sqrt{4-r^{2}}$.
middle r : from 0 to 2 .
outer θ : from 0 to 2π.
$\Rightarrow z_{c m}=\frac{3}{16 \pi} \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{\sqrt{4-r^{2}}} z r d z d r d \theta$.

Inner: $\left.\frac{3}{16 \pi} \frac{z^{2} r}{2}\right|_{0} ^{\sqrt{4-r^{2}}}=\frac{3}{16 \pi} \frac{4-r^{2}}{2} \cdot r=\frac{3}{16 \pi} \frac{4 r-r^{3}}{2}$.
Middle: $\frac{3}{16 \pi}\left[r^{2}-\left.\frac{r^{4}}{8}\right|_{0} ^{2}=\frac{3}{8 \pi}\right.$.
Outer: $\frac{3}{8 \pi} 2 \pi=\frac{3}{4} \Rightarrow z_{c m}=\frac{3}{4}$.
It makes sense that the center of mass would lie between $(0,0,0)$ and $(0,0,1)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

