Problems: Practice with Triple Integrals

Find the moment of inertia about the z-axis of a solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$. Assume the solid has uniform density 1.
Answer: We use the formula $I=\iiint \rho r^{2} d V$ with density $\rho=1$. Converting to polar coordinates, the equation of the paraboloid becomes $z=r^{2}$ and we get the limits of integration $0 \leq r \leq \sqrt{z}$.

$$
\begin{aligned}
I & =\iiint_{\text {solid }} \rho r^{2} d V \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{z}} r^{2} \cdot r d r d \theta d z \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \frac{z^{2}}{4} d \theta d z \\
& =\int_{0}^{1} \pi \frac{z^{2}}{2} d z \\
& =\frac{\pi}{6} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

