18.03 Problem Set 2: Part II Solutions

Part I points: 4. 4, 5. 6, 6. 8, 7. 6.
4. (a) [2] x falls; y rises and then falls; and z rises. With $\sigma=.1, \mu=.2$:

(b) [4] Startium obeys the natural decay equation, $\dot{x}=-\sigma x$, with solution $x=x(0) e^{-\sigma t}$. To relate σ to its half-life, solve for it in $x(0) / 2=x(0) e^{-\sigma t_{S}}$ to find $\sigma=(\ln 2) / t_{S}$. Similarly, $\mu=(\ln 2) / t_{M}$.
Midium decays as well, but in each small time interval gets half the decayed Startium added: so $y(t+\Delta t) \simeq-\mu y(t) \Delta t+\frac{1}{2} \sigma x(t) \Delta t$. Thus $\dot{y}=-\mu y+\frac{1}{2} \sigma x$. Endium receives half the decayed Startium and all the decayed Midium: $\dot{z}=\frac{1}{2} \sigma x+\mu y$. Adding these three equations gives $\dot{x}+\dot{y}+\dot{z}=0$.
(c) [4] Using $x(0)=1$, we know that $x=e^{-\sigma t}$. Thus $\dot{y}+\mu y=\frac{1}{2} \sigma e^{-\sigma t}$. An integrating factor is given by $e^{\mu t}: \frac{d}{d t}\left(e^{\mu t} y\right)=\frac{1}{2} \sigma e^{(\mu-\sigma) t}$. Integrating, $e^{\mu t} y=\frac{1}{2} \frac{\sigma}{\mu-\sigma} e^{(\mu-\sigma) t}+c$ or $y=$ $\frac{1}{2} \frac{\sigma}{\mu-\sigma} e^{-\sigma t}+c e^{-\mu t}$. The initial condition is $y(0)=0$, so $c=-\frac{1}{2} \frac{\sigma}{\mu-\sigma}: y=\frac{1}{2} \frac{\sigma}{\mu-\sigma}\left(e^{-\sigma t}-e^{-\mu t}\right)$. We could solve for z in the same way, but it's easier to calculate $z=1-x-y=$ $1+\frac{\sigma / 2-\mu}{\mu-\sigma} e^{-\sigma t}+\frac{\sigma / 2}{\mu-\sigma} e^{-\mu t}$
(d) [4] From the differential equation for y, we know that a critical point occurs when $\mu y=\frac{1}{2} \sigma e^{-\sigma t}$. Substitute the value for $y: \mu \frac{1}{2} \frac{\sigma}{\mu-\sigma}\left(e^{-\sigma t}-e^{-\mu t}\right)=\frac{1}{2} \sigma e^{-\sigma t}$. Some algebra leads to $\sigma e^{-\sigma t}=\mu e^{-\mu t}$, so $e^{(\mu-\sigma) t}=\mu / \sigma$, so $t_{\max }=\frac{\ln \mu-\ln \sigma}{\mu-\sigma}$.
(e) [2] Everything gets doubled.
(f) [4] If $x=e^{t}$ then $q(t)=t \dot{x}+2 x=t e^{t}+2 e^{t}=(t+2) e^{t}$. The associated homogeneous equation is $t \dot{x}+2 x=0$, which is separable: $d x / x=-2 d t / t$, so $\ln |x|=-2 \ln |t|+c=$ $\ln \left(t^{-2}\right)+c$ and $x=C / t^{2}$. So the general solution of the original equation is $e^{t}+C / t^{2}$.
5. (a) [10] and 6. (a) The rectangular expression gives the coordinates for the little pictures. Any angle may be altered by adding a multiple of 2π.

$1-i$	$\sqrt{2},-\pi / 4$	$\sqrt{2} e^{-\pi i / 4}$
$\sqrt{3}+i$	$2, \pi / 6$	$2 e^{\pi i / 6}$
$(-1-i) / \sqrt{2}$	$1,5 \pi / 4$	$e^{5 \pi i / 4}$
$(1+\sqrt{3} i) / 2$	$1, \pi / 3$	$e^{\pi i / 3}$
$(-1+i) / \sqrt{2}$	$1,3 \pi / 4$	$e^{3 \pi i / 4}$

(b) [8] (i) $\pm 1 \pm i$; or $\sqrt{2} e^{k \pi i / 4}$ where $k=1,3,5,7$. (ii) $-1 \pm i$.
6. (a) [2] above.
(b) $[3] e^{a+b i}=e^{a} e^{b i}$ so $\left|e^{a+b i}\right|=\left|e^{a}\right|\left|e^{b i}\right|=e^{a}$. Since $|-2|=2, a=\ln 2 . \operatorname{Arg}\left(e^{a+b i}\right)=b$ up to adding multiples of 2π. $\operatorname{Arg}(-1)=\pi$, so b is any odd multiple of π. Answer: $\ln 2+b \pi i, b= \pm 1, \pm 3, \ldots$.
(c) [3] $\cos (4 t)=\operatorname{Re} e^{4 i t}=\operatorname{Re}\left(\left(e^{i t}\right)^{4}\right)=\operatorname{Re}\left((\cos t+i \sin t)^{4}\right)$. By the binomial theorem, $(a+b i)^{4}=a^{4}+4 a^{3} b i-6 a^{2} b^{2}-4 a b^{3} i+b^{4}$, so we find $\cos (4 t)=\cos ^{4} t-6 \cos ^{2} t \sin ^{2} t+\sin ^{4} t$.
(d) $[8]$ (i) $w=2 \pi i$. The trajectory is the unit circle.
(ii) $w=-1$. The trajectory is the positive real axis.
(iii) $w=-1+2 \pi i$. The trajectory is a spiral, spiralling in towards the origin in a counterclockwise direction and passing though 1 .
(iv) $w=0$. The trajectory is the single point 1 .
7. (a) $[8] \frac{e^{3 i t}}{\sqrt{3}+i}=\frac{(\sqrt{3}-i)}{4}(\cos (3 t)+i \sin (3 t))$ has real part $\frac{\sqrt{3}}{4} \cos (3 t)+\frac{1}{4} \sin (3 t)$.

Form the right triangle with sides $a=\frac{\sqrt{3}}{4}$ and $b=\frac{1}{4}$. The hypotenuse is $A=1 / 2$ and the angle is $\phi=\pi / 6$.
$\sqrt{3}+i=2 e^{\pi i / 6}$ (by essentially the same triangle), so $\frac{e^{3 i t}}{\sqrt{3}+i}=\frac{1}{2} e^{i(3 t-\pi / 6)}: B=\frac{1}{2}, \phi=\frac{\pi}{6}$, and $\operatorname{Re}\left(B e^{i(3 t-\phi)}\right)=B \cos (3 t-\phi)$, so you get the same answer.
(b) [5] Substituting $z=w e^{2 i t}, e^{2 i t}=w 2 i e^{2 i t}+3 w e^{2 i t}$, so $1=w(2 i+3)$ or $w=\frac{1}{2 i+3}=\frac{3-2 i}{13}$. Thus a solution of the desired form is $z_{p}=\frac{3-2 i}{13} e^{2 i t}$. The general solution is $z_{p}+c e^{-3 t}$. (c) [5] If $x=\operatorname{Re} z$, the real part of $\dot{z}+3 z=e^{2 i t}$ is $\dot{x}+3 x=\cos (2 t)$. Now $z_{p}=\frac{3-2 i}{13} e^{2 i t}=$ $\frac{3-2 i}{13}(\cos (2 t)+i \sin (2 t))$ has real part $x_{p}=\frac{1}{13}(3 \cos (2 t)+2 \sin (2 t))$. The general solution is then $x=x_{p}+c e^{-3 t}$.

MIT OpenCourseWare http://ocw.mit.edu

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

