18.03 Problem Set 3: Part II Solutions

Part I points: 8. 8, 9. 12, 11. 9, 12. 7.
8. (a) [3] The general logistic equation with small-population growth rate k_{0} and equilibrium population p is $y=k_{0}(1-(y / p)) y$, The top menu choice is $\dot{y}=(1-y) y-a$, which is the case $k_{0}=1$ and $p=1$ together with a hunt rate of a. The only added assumption is $k_{0}=1$.
(b) $[3] 0=(1-y) y-a$ is the same as $y^{2}-y+a=0$, which by the quadratic formula has solutions $y=\frac{1}{2} \pm \sqrt{\frac{1}{4}-a}$. Thus when $a>\frac{1}{4}$ there are no equilibria; when $a=\frac{1}{4}$ there is one, namely $y_{0}=\frac{1}{2}$, and it is semi-stable; and when $a<\frac{1}{4}$ there are two, the top one stable and the bottom one unstable.
(c) [3] 187.5 oryx is $\frac{3}{16}$ kilo-oryx, and $a=\frac{3}{16}$ leads to critical points $\frac{1}{2} \pm \frac{1}{4}$ or $\frac{1}{4}$ and $\frac{3}{4}$. So the stable equilibrium population is 750 animals, and the critical population below which it will crash is 250 .
(d) $[5]$

(e) $[2] y^{2}-y-a=0$.
9. (a) [3] $y_{0}=3 / 4$, from (b) above: $y=u+\frac{3}{4}$, so $1-y=\frac{1}{4}-u$ and $\dot{u}=\left(\frac{1}{4}-u\right)\left(u-\frac{3}{4}\right)-\frac{3}{16}=$ $-\frac{1}{2} u-u^{2}$. No explicit time dependence, so autonomous; and if $u=0$ then $\dot{u}=0$.
(b) [3] The linearized equation is $\dot{u}=-\frac{1}{2} u$. The general solution to this is $u=c e^{-t / 2}$.
(c) [3] Thus y is well approximated by $\frac{3}{4}+c e^{-t / 2}$: the population decays, or relaxes, exponentially (with decay rate $\frac{1}{2}$) to the equilibrium value.
(d) [3] Both $p(t)$ and $q(t)$ must be constants.
11. (a) [4] $p(s)=\frac{1}{2} s^{2}+\frac{3}{2} s+\frac{5}{8}=\frac{1}{2}\left(s^{2}+3 s+\frac{5}{4}\right)$. One way to find the roots is by completing the square: $s^{2}+3 s+\frac{5}{4}=\left(s+\frac{3}{2}\right)^{2}-1$, which clearly has roots $-\frac{3}{2} \pm 1$, or $-\frac{1}{2}$ and $-\frac{5}{2}$. This is what is shown on the applet.
(b) [4] $x=c_{1} e^{-t / 2}+c_{2} e^{-5 t / 2}$. So $\dot{x}=-\frac{1}{2} c_{1} e^{-t / 2}-\frac{5}{2} c_{2} e^{-5 t / 2}$, and $x_{0}=c_{1}+c_{2}, \dot{x}_{0}=$ $-\frac{1}{2} c_{1}-\frac{5}{2} c_{2}$. Thus $x_{0}+2 \dot{x}_{0}=-4 c_{2}$ so $c_{2}=-\frac{1}{4}\left(x_{0}+2 \dot{x}_{0}\right)$. Then $c_{1}=x_{0}-c_{2}=\frac{1}{4}\left(5 x_{0}+2 \dot{x}_{0}\right)$.
(c) $[3] x$ is purely exponential when either $c_{1}=0$-so $5 x_{0}+2 \dot{x}_{0}=0$ - or when $c_{2}=0$-so $x_{0}+2 \dot{x}_{0}=0$.
(d) [4] Try to solve for t in $0=x(t)=c_{1} e^{-t / 2}+c_{2} e^{-5 t / 2}$. This leads to $c_{2} / c_{1}=-e^{2 t}$. This admits a solution for some t exactly when c_{1} and c_{2} are of opposite sign. To get positive t, you need $c_{2} / c_{1}<-1$: so either $-c_{2}>c_{1}>0$ or $-c_{2}<c_{1}<0$. In terms of x_{0}, \dot{x}_{0}, this says either $x_{0}+2 \dot{x}_{0}>5 x_{0}+2 \dot{x}_{0}>0$, or $x_{0}+2 \dot{x}_{0}<5 x_{0}+2 \dot{x}_{0}<0$, i.e. either $x_{0}<0$ and $\dot{x}_{0}>\frac{5}{2}\left(-x_{0}\right)$, or $x_{0}>0$ and $\dot{x}_{0}<-\frac{5}{2} x_{0}$. This is borne out by the applet.
12. (a) $[6] p(s)=\frac{1}{2}\left(s^{2}+2 b s+\frac{5}{4}\right)=\frac{1}{2}\left((s+b)^{2}+\left(\frac{5}{4}-b^{2}\right)\right)$ has a double root when $\frac{5}{4}=b^{2}$ or $b=\frac{\sqrt{5}}{2}$. (We don't allow $b<0$.) Then the root is $-b$, so the general solution is $(a+c t) e^{-b t}$.
(b) [6] When $b=\frac{1}{4}, p(s)=\frac{1}{2}\left(s^{2}+\frac{1}{2} s+\frac{5}{4}\right)=\frac{1}{2}\left(\left(s+\frac{1}{4}\right)^{2}+\frac{19}{16}\right)$ has roots $-\frac{1}{4} \pm \frac{\sqrt{19}}{4} i \simeq$ $-0.25 \pm(1.0897) i$. The general solution is thus $e^{-t / 4}\left(a \cos \left(\frac{\sqrt{19}}{4} t\right)+b \sin \left(\frac{\sqrt{19}}{4} t\right)\right)=$ $A e^{-t / 4} \cos \left(\frac{\sqrt{19}}{4} t-\phi\right)$. (Either form suffices.)
(c) [5] My measurements are: $0.00,2.93,5.76,8.69,11.52$. The successive differences are $2.93,2.83,2.93,2.83$ - pretty close to constant. This is half the period of the sinusoid involved in the solution, which has circular frequency $\omega=\frac{\sqrt{19}}{4}$ and hence half-period $\frac{\pi}{\omega}=\frac{4 \pi}{\sqrt{19}} \simeq 2.8829231$. Not bad agreement! The oscillations are constant over time (though the amplitude decreases). Successive differences of zeros of other solutions should be the same.

MIT OpenCourseWare
http://ocw.mit.edu

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

