18.03 Problem Set 5: Part II Solutions

Part I points: 17. 4, 18. 0, 20. 4, 21. 4.
17. (a) [4] It seems that C must be close to $50 \mu \mathrm{~F}$. The values of V_{0} and R don't seem to matter.
(b) [10] Here is one of several ways to do this problem. We are looking at $L \ddot{I}+R \dot{I}+$ $(1 / C) I=V_{0} \omega \cos (\omega t)$. To undersand its sinusoidal solution, make the complex replacement $L \ddot{z}+I \dot{z}+(1 / C) z=V_{0} \omega e^{i \omega t}$, so that $I_{p}=\operatorname{Re} z_{p}$. By the ERF, the exponential solution is $z_{p}=\frac{\omega e^{i \omega t}}{p(i \omega)}$. To be in phase with $\sin (\omega t)$, the real part of this must be a positive multiple of $\sin (\omega t)$. This occurs precisely when the real part of $p(i \omega)$ is zero. $\operatorname{Re} p(i \omega)=(1 / C)-L \omega^{2}$, so the relation is $1 / C=L \omega^{2}$.

To check, when $L=500 \mathrm{mH}=.5 \mathrm{H}$ and $\omega=200 \mathrm{rad} / \mathrm{sec}$, the system response is in phase when $C=1 /\left(.5 \times(200)^{2}\right)=50 \times 10^{-6} \mathrm{~F}=50 \mu \mathrm{~F}$.
(c) [4] It seems that the maximal system response amplitude I_{r} occurs when $\omega=100$ $\mathrm{rad} / \mathrm{sec}$, and that it is about 5 amps . Then the solution is in phase with the input voltage.
(d) [10] In (b) we saw that the solution is the real part of $z_{p}=\frac{\omega e^{i \omega t}}{p(i \omega)}$. The amplitude of this sinusoid is $\left|\frac{\omega}{p(i \omega)}\right|$, which is maximal when its reciprocal $\left|\frac{\left(1 / C-L \omega^{2}\right)+R i \omega}{\omega}\right|=$ $\left|\left(\frac{1}{C \omega}-L \omega\right)+R i\right|$ is minimal. The imaginary part here is constant, so as ω varies the complex number moves along the horizontal straight line with imaginary part R. The point on that line with minimal magnitude is $R i$, which occurs when the real part is zero: $C / \omega=L \omega$, or $\omega_{r}=1 / \sqrt{L C}$. The amplitude is then $I_{r}=g\left(\omega_{r}\right) V_{0}=V_{0} / R$. It depends only on V_{0} and R, not on L or C ! Finally, this is the same as the condition for phase lag zero, so the phase lag at $\omega=\omega_{r}$ is zero.
With the given values $R=100 \Omega, L=1 \mathrm{H}, C=10^{-4} \mathrm{~F}, \omega_{r}=100 \mathrm{rad} / \mathrm{sec}$, as observed. When $V_{0}=500 \mathrm{~V}$ and $R=100 \Omega, I_{r}=5 \mathrm{Amps}$, as observed.
18. [12] Notice that $\zeta^{2}=\frac{b^{2}}{4 m^{2}} \frac{m}{k}=\frac{b^{2}}{4 m k}$, so $\omega_{d}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}=\omega_{n} \sqrt{1-\frac{b^{2}}{4 m k}}$ or $\omega_{d}=$ $\omega_{n} \sqrt{1-\zeta^{2}}$.
Solutions in the underdamped case have the form $x=A e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t-\phi\right)$. [From lecture: To see where the maxima are, notice that by the product rule for derivatives \dot{x} is of the form $e^{-\zeta \omega_{n} t}$ times a sinusoid of circular frequency ω_{d}. It thus vanishes at times spaced by π / ω_{d}. Every other one is a maximum; they are spaced by $2 \pi / \omega_{d}$.] Each time the peak is thus multiplied by a factor of $e^{-\zeta \omega_{n}\left(2 \pi / \omega_{d}\right)}=e^{-2 \pi \zeta / \sqrt{1-\zeta^{2}}}$. Thus after n cycles it is multiplied by a factor of $e^{-2 \pi n \zeta / \sqrt{1-\zeta^{2}}}$ so $\frac{1}{2}=e^{-2 \pi n \zeta / \sqrt{1-\zeta^{2}}}$ or $\frac{\alpha}{n}=\frac{\zeta}{\sqrt{1-\zeta^{2}}}$ where $\alpha=\frac{\ln 2}{2 \pi} \simeq 0.1103178$. This solves out to $\zeta=\frac{\alpha / n}{\sqrt{1+(\alpha / n)^{2}}}$ When $n=10$, $\frac{1}{\sqrt{1+(\alpha / n)^{2}}} \simeq 0.99993916$, so ζ is very close to $\alpha / 10$.
20. (a) [2] Odd cosines work best; $a_{1}=1, a_{3}=-\frac{1}{3}, a_{5}=\frac{1}{5}, \ldots$.
(b) [8] $f(t)$ is even, so $b_{n}=0$. For $n>0, a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (n t) d t=$
$\frac{2}{\pi}\left(\int_{0}^{\pi / 2} \frac{\pi}{4} \cos (n t) d t+\int_{\pi / 2}^{\pi} \frac{\pi}{4}(-\cos (n t)) d t\right)=\frac{2}{\pi} \frac{\pi}{4}\left(\left[\frac{\sin (n t)}{n}\right]_{0}^{\pi / 2}-\left[\frac{\sin (n t)}{n}\right]_{\pi / 2}^{\pi}\right)$.

Now $\sin (0)=\sin (n \pi)=0$, and the upper limit of the first term coincides with the lower limit of the second, so $a_{n}=\frac{1}{n} \sin \left(\frac{n \pi}{2}\right)$. When n is even these sine values are zero. The average value is 0 , so $a_{0}=0$. When n is odd they alternate between +1 and -1 . So the Fourier series is $f(t)=\cos (t)-\frac{1}{3} \cos (3 t)+\frac{1}{5} \cos (5 t)-\cdots$.
(c) $[2]$

21. (a) [4] The angle difference formula for sine gives $\sin \left(t-\frac{\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right) \cos t+$ $\cos \left(\frac{\pi}{3}\right) \sin t=-\frac{\sqrt{3}}{2} \cos t+\frac{1}{2} \sin t$ and this is the Fourier series. (If you don't remember the angle difference formula, you can use the complex exponential!: $\sin \left(t-\frac{\pi}{3}\right)=$ $\left.\operatorname{Im}\left(e^{i(t-\pi / 3)}\right)=\operatorname{Im}\left(e^{-i \pi / 3} e^{i t}\right)=\operatorname{Im}\left(\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)(\cos t+i \sin t)\right)=-\frac{\sqrt{3}}{2} \cos t+\frac{1}{2} \sin t.\right)$
(b) $[8] \operatorname{sq}(t)$ is still odd, so $a_{n}=0$, and, with $L=2 \pi, b_{n}=\frac{2}{2 \pi} \int_{0}^{2 \pi} \mathrm{sq}(t) \sin \left(\frac{n t}{2}\right) d t=$ $\frac{1}{\pi}\left(\int_{0}^{\pi} \sin \left(\frac{n t}{2}\right) d t+\int_{\pi}^{2 \pi}\left(-\sin \left(\frac{n t}{2}\right)\right) d t\right)=\frac{1}{\pi}\left(\left[-\frac{2}{n} \cos \left(\frac{n t}{2}\right)\right]_{0}^{\pi}-\left[-\frac{2}{n} \cos \left(\frac{n t}{2}\right)\right]_{\pi}^{2 \pi}\right)=$ $\frac{2}{\pi n}\left(-\cos \left(\frac{\pi n}{2}\right)+1+\cos \left(\frac{2 \pi n}{2}\right)-\cos \left(\frac{\pi n}{2}\right)\right)=\frac{2}{\pi n} c_{n}$, where $c_{n}=1-2 \cos \left(\frac{\pi n}{2}\right)+\cos (\pi n)$. We evaluate c_{n} for some small values of n :

n	$\cos \left(\frac{\pi n}{2}\right)$	$\cos (\pi n)$	c_{n}
0	1	1	0
1	0	-1	0
2	-1	1	4
3	0	-1	0

repeat. So $b_{n}=0$ unless $n=2,6,10, \ldots$, and for such $n, b_{n}=\frac{8}{\pi n}$. The Fourier series is $\mathrm{sq}(t)=\frac{8}{\pi}\left(\frac{1}{2} \sin \left(\frac{2 t}{2}\right)+\frac{1}{6} \sin \left(\frac{6 t}{2}\right)+\cdots\right)$ This is the same series as the Fourier series for $\mathrm{sq}(t)$ when it is regarded as having period 2π. The numbering of the terms is different-only every fourth term is nonzero instead of every other term-but the series itself is identical.
(c) $\left.[8] \operatorname{sq}\left(t-\frac{\pi}{4}\right)=\frac{4}{\pi}\left(\sin \left(t-\frac{\pi}{4}\right)+\frac{1}{3} \sin \left(3 t-\frac{3 \pi}{4}\right)\right)+\cdots\right)$. Now $\sin (\theta-\phi)=(-\sin \phi) \cos \theta+$
$(\cos \phi) \sin \theta$ and (with $\alpha=\sqrt{2} / 2)$

$n=$	1	3	5	7
$-\sin (n \pi / 4)$	$-\alpha$	$-\alpha$	α	α
$\cos (n \pi / 4)$	α	$-\alpha$	$-\alpha$	α

so $\operatorname{sq}\left(t-\frac{\pi}{4}\right)=\frac{2 \sqrt{2}}{\pi}\left(\left(-\cos (t)-\frac{1}{3} \cos (3 t)+\frac{1}{5} \cos (5 t)+\frac{1}{7} \cos (7 t)--++\cdots\right)+(\sin (t)-\right.$ $\left.\left.\frac{1}{3} \sin (3 t)-\frac{1}{5} \sin (5 t)+\frac{1}{7} \sin (7 t)+--+\cdots\right)\right)$.
(d) $[4] 1+2 \mathrm{sq}(2 \pi t)=1+\frac{8}{\pi}\left(\sin (2 \pi t)+\frac{1}{3} \sin (6 \pi t)+\frac{1}{5} \sin (10 \pi t)+\cdots\right)$.
(e) [4] $f(t)=\frac{\pi}{4} \mathrm{sq}\left(t+\frac{\pi}{2}\right)=\sin \left(t+\frac{\pi}{2}\right)+\frac{1}{3} \sin \left(3\left(t+\frac{\pi}{2}\right)\right)+\cdots$. Now $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$ and $\sin \left(\theta+\frac{3 \pi}{2}\right)=-\cos \theta$, so $f(t)=\cos t-\frac{1}{3} \cos (3 t)+\frac{1}{5} \cos (5 t)+\cdots$.
(f) [4] $g(t)$ is odd so it's given by a sine series. $g^{\prime}(t)=\frac{4}{\pi} f(t)$, so the Fourier series of $g(t)$ is the integral of the Fourier series of $\frac{4}{\pi} f(t): g(t)=\frac{4}{\pi}\left(\sin (t)-\frac{1}{3^{2}} \sin (3 t)+\frac{1}{5^{2}} \sin (5 t)-\cdots\right)$.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

