18.03 Problem Set 9: Solutions

Part I: 34. 4; 35. 10; 36. 6.
(a) $[18] A=\left[\begin{array}{cc}0.5 & 1 \\ -2.25 & 0.5\end{array}\right]$ has characteristic polynomial $p_{A}(\lambda)=\lambda^{2}-\lambda+2.5$, and eigenvalues $\frac{1 \pm 3 i}{2}$. An eigenvector for $\lambda_{1}=\frac{1+3 i}{2}$ satisfies $\left(A-\lambda_{1} I\right) \mathbf{v}_{\mathbf{1}}=\mathbf{0}$, that is, $\left[\begin{array}{cc}-3 i / 2 & 1 \\ -9 / 4 & -3 i / 2\end{array}\right] \mathbf{v}_{\mathbf{1}}=\mathbf{0}$. One choice is $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 3 i / 2\end{array}\right]$. The normal mode is then $e^{(1+3 i) t / 2}\left[\begin{array}{c}1 \\ 3 i / 2\end{array}\right]$, which has real and imaginary parts $\mathbf{u}_{\mathbf{1}}=e^{t / 2}\left[\begin{array}{c}\cos (3 t / 2) \\ -(3 / 2) \sin (3 t / 2)\end{array}\right]$ and $\mathbf{u}_{\mathbf{2}}=e^{t / 2}\left[\begin{array}{c}\sin (3 t / 2) \\ (3 / 2) \cos (3 t / 2)\end{array}\right]$.
The initial condition is $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, which, conveniently, is satisfied by $\mathbf{u}_{\mathbf{1}}$. Since $\dot{\mathbf{u}}=A \mathbf{u}$, we find $\dot{\mathbf{u}}(0)=A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}0.5 \\ -2.25\end{array}\right]$. So $\dot{x}(0)=0.5$, and the weasel population is increasing at $t=0$ while the number of voles is decreasing. $y(t)=0$ occurs next when $3 t / 2=\pi$, or $t=2 \pi / 3$. The graphs of $x(t)=e^{t / 2} \cos (3 t / 2)$ and $y(t)=$
 $-(3 / 2) e^{t / 2} \sin (3 t / 2)$ are "anti-damped" sinusoids, with increasing amplitude. The relevant trajectory is the one crossing the positive x axis half way out. The values of $\mathbf{u}(t)$ are $\mathbf{u}\left(-\frac{2 \pi}{3}\right)=$ $e^{-\pi / 3}\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{u}\left(-\frac{\pi}{3}\right)=e^{-\pi / 6}\left[\begin{array}{c}0 \\ 3 / 2\end{array}\right]$, $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{u}\left(\frac{\pi}{3}\right)=e^{\pi / 6}\left[\begin{array}{c}0 \\ -3 / 2\end{array}\right]$, $\mathbf{u}\left(\frac{2 \pi}{3}\right)=e^{\pi / 3}\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
(b) [8] With $A=\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right], p_{A}(\lambda)=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$, so we have a repeated eigenvalue $\lambda_{1}=1$. To find an eigenvector form $A-\lambda_{1} I=\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]$. A nonzero eigenvector is given (for any b) by $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. If $b \neq 0$, the eigenvectors for value λ_{1} are exactly the multiples of \mathbf{v} (the matrix is defective), but for $b=0, A=I$ and any vector is an eigenvector (the matrix is complete). When $b \neq 0$, the normal modes are $e^{t}\left[\begin{array}{l}c \\ 0\end{array}\right]$, for c a real constant. When $b=0$, the normal modes are $e^{t} \mathbf{v}$ for any vector \mathbf{v}. When $b \neq 0$, we must solve $\left(A-\lambda_{1} I\right) \mathbf{w}=\mathbf{v}_{\mathbf{1}}$, that is, $\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right] \mathbf{w}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. The solution is $\mathbf{w}=\left[\begin{array}{c}0 \\ 1 / b\end{array}\right]$, so the extra solution is $\mathbf{u}_{\mathbf{2}}=e^{\lambda_{1} t}\left(t \mathbf{v}_{\mathbf{1}}+\mathbf{w}\right)=$ $e^{t}\left[\begin{array}{c}t \\ 1 / b\end{array}\right]$.
35. (a) [4] $\operatorname{tr} A=a-1, \operatorname{det} A=3-a$, so $\operatorname{tr} A=2-\operatorname{det} A$. $\operatorname{det} A=0$ when $a=3$. $\operatorname{tr} A=0$ when $a=1$. $\operatorname{det} A=(\operatorname{tr} A)^{2} / 4$ when $a^{2}+2 a-11=0$ or $a=-1 \pm 2 \sqrt{3}$, i.e. $a \simeq-4.4641$ and $a=2.4641$.
(c) [4] Diagram showing: $a<-1-2 \sqrt{3}$-stable node $=$ nodal sink
$a=-1-2 \sqrt{3}$-defective stable node $=$ defective nodal sink
$-1-2 \sqrt{3}<a<1-$ counterclockwise stable spiral $=$ spiral sink
$a=1$-counterclockwise center
$1<a<-1+2 \sqrt{3}$-counterclockwise unstable spiral $=$ spiral source
$a=1+2 \sqrt{3}-$ unstable defective node $=$ defective nodal source
$1+2 \sqrt{3}<a<3$-unstable node $=$ nodal source
$a=3$-unstable degenerate comb
$3<a$-saddle
(b)-(c) [18] Here are pictures for $a=0,1,2,-1+$ $2 \sqrt{3}, 2.75,3,4$. ($a=-2 \sqrt{3}$ omitted.) The picture for some $a<-1-2 \sqrt{3}$ would show a nodal sink, and that for $a=-1-2 \sqrt{3}$ would show a defective nodal sink.

36. (a) [9] With $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right], p_{A}(\lambda)=\lambda^{2}-2 a \lambda+\left(a^{2}+b^{2}\right)=(\lambda-a)^{2}+b^{2}$, so the eigenvalues are $a \pm b i$. An eigenvector for $\lambda_{1}=a+b i$ is given by $\mathbf{v}_{\mathbf{1}}$ such that $\left[\begin{array}{cc}-b i & -b \\ b & -b i\end{array}\right] \mathbf{v}_{\mathbf{1}}=\mathbf{0}$, and we can take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$. The corresponding normal mode is $e^{(a+b i) t}\left[\begin{array}{c}1 \\ -i\end{array}\right]$. Its real and imaginary parts give linearly independent real solutions, $e^{a t}\left[\begin{array}{c}\cos (b t) \\ \sin (b t)\end{array}\right]$ and $e^{a t}\left[\begin{array}{c}\sin (b t) \\ \cos (b t)\end{array}\right]$.

So a fundamental matrix is given by $\Phi(t)=e^{a t}\left[\begin{array}{cc}\cos (b t) & \sin (b t) \\ \sin (b t) & -\cos (b t)\end{array}\right] . ~ \Phi(0)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$\Phi(0)^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, so $e^{A t}=\Phi(t) \Phi(0)^{-1}=e^{a t}\left[\begin{array}{cc}\cos (b t) & -\sin (b t) \\ \sin (b t) & \cos (b t)\end{array}\right]$.
$A\left(e^{(a+b i) t}\right)=A\left(e^{a t}(\cos (b t)+i \sin (b t))\right)=e^{a t}\left[\begin{array}{cc}\cos (b t) & -\sin (b t) \\ \sin (b t) & \cos (b t)\end{array}\right]=e^{A(a+b i) t}$.
(b) $[9] s^{2}+2 s+2=(s+1)^{2}+1$ so the roots of the characteristic polynomial are $-1 \pm i$. Basic solutions are given by $y_{1}=e^{-t} \cos (t)$ and $y_{2}=e^{-t} \sin (t)$. (I write y instead of x because the problem wrote x for the normalized solutions.) $y_{1}(0)=1, \dot{y}_{1}(0)=-1, y_{2}(0)=0, \dot{y}_{2}(0)=1$. So $x_{1}=y_{1}+y_{2}$ and $x_{2}=y_{2}$ form a normalized pair of solutions: $x_{1}(t)=e^{-t}(\cos t+\sin t)$, $x_{2}(t)=e^{-t} \sin t$.
The companion matrix is $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right]$. Its characteristic polynomial is the same, $\lambda^{2}+2 \lambda+2$, so its eigenvalues are the same, $-1 \pm i$. An eigenvector for value $-1+i$ is given by $\mathbf{v}_{\mathbf{1}}$ such that $\left[\begin{array}{cc}1-i & 1 \\ -2 & -1-i\end{array}\right] \mathbf{v}_{\mathbf{1}}=\mathbf{0}$. We can take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$. The corresponding normal mode is $e^{(-1+i) t}\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$, which has real and imaginary parts $\mathbf{u}_{\mathbf{1}}=e^{-t}\left[\begin{array}{c}\cos t \\ -\cos t-\sin t\end{array}\right]$ and $\mathbf{u}_{\mathbf{2}}=e^{-t}\left[\begin{array}{c}\sin t \\ -\sin t+\cos t\end{array}\right] . \Phi(t)=\left[\begin{array}{ll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}}\end{array}\right]$ has $\Phi(0)=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right] . \Phi(0)^{-1}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, so $e^{A t}=\Phi(t) \Phi(0)^{-1}=e^{-t}\left[\begin{array}{cc}\cos t+\sin t & \sin t \\ -2 \sin t & -\sin t+\cos t\end{array}\right]$. The top entries coincide with x_{1} and x_{2} computed above.
(c) $[9]$ (i) $\mathbf{u}_{\mathbf{1}}=c_{1} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\mathbf{u}_{\mathbf{1}}(0)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}c_{1}+c_{2} \\ c_{1}+2 c_{2}\end{array}\right]$. Thus $c_{1}=2$ and $c_{2}=-1: \mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}2 e^{3 t}-e^{2 t} \\ 2 e^{3 t}-2 e^{2 t}\end{array}\right]$. Start again for $\mathbf{u}_{\mathbf{2}}: \mathbf{u}_{\mathbf{2}}=c_{1} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+$ $c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\mathbf{u}_{\mathbf{2}}(0)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}c_{1}+c_{2} \\ c_{1}+2 c_{2}\end{array}\right]$. Thus $c_{1}=-1$ and $c_{2}=1$: $\mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}-e^{3 t}+e^{2 t} \\ -e^{3 t}+2 e^{2 t}\end{array}\right]$.
(ii) We have just computed the columns of the exponential matrix:
$e^{A t}=\left[\begin{array}{cc}2 e^{3 t}-e^{2 t} & -e^{3 t}+e^{2 t} \\ 2 e^{3 t}-2 e^{2 t} & -e^{3 t}+2 e^{2 t}\end{array}\right]$.
(iii) The matrix A has eigenvalues 3 and 2, with eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=$ $3\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The top entries give the equations $a+b=3$ and $a+2 b=2$, which imply $a=4, b=-1$. The bottom entries give the equations $c+d=3$, $c+2 d=4$, which imply $c=2, d=1$. Thus $A=\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$.

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations님

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

