18.03 Class 4, Feb 10, 2010

First order linear equations: integrating factors
[1] First order homogeneous linear equations
[2] Newtonian cooling
[3] Integrating factor (IF)
[4] Particular solution, transient, initial condition
[5] General formula for IF

Definition: A "linear ODE" is one that can be put in the "standard form"

$$
r(t) x^{\prime}+p(t) x=q(t) \quad x=x(t)
$$

$r(t), p(t)$ are the "coefficients" [I may have called q(t) also a coefficient also on Monday; this is not correct, fix it if I did.]

The left hand side represents the "system," and the right hand side arises from an "input signal." A solution $x(t)$ is a "system response" or "output signal."

We can always divide through by $r(t)$, to get an equation of the Reduced standard form:

$$
\begin{equation*}
x^{\prime}+p(t) x=q(t) \quad x=x(t) \tag{*}
\end{equation*}
$$

The equation is "homogEneous" if q is the "null signal," $q(t)=0$. This corresponds to letting the system evolve in isolation:
In the bank example, no deposits and no withdrawals.
In the RC example, the power source is not providing any voltage increase.
The homogeneous linear equation

$$
x^{\prime}+p(t) x=0 \quad\left({ }^{*}\right) _h
$$

is separable. Here's the solution,
in general on the left, with an example (with $p(t)=2 t$) on the right:

	$x^{\prime}+p(t) x$	$=0$	$x^{\prime}+2 t x$	$=0$
Separate:	$d x / x$	$=-p(t) d t$	$d x / x$	$=-2 t d t$
Integrate:	$\ln \|x\|$	$=-$ int $p(t) d t+c$	$\ln \|x\|$	$=-t^{\wedge} 2+c$
Exponentiate:	$\|x\|$	$=e^{\wedge} c e^{\wedge}\{-$ int $p(t) d t\}$		$\|x\|=e^{\wedge} c e^{\wedge}\{-t \wedge 2\}$

Eliminate the absolute value and reintroduce the lost solution:

$$
x=C e^{\wedge}\{- \text { int } p(t) d t\} \quad x=C e^{\wedge}\left\{-t^{\wedge} 2\right\}
$$

In the example, we chose a particular anti-derivative of k, namely kt. That is what I really have in mind to do in general. The constant of integration is taken care of by the constant C.

So the general solution to (*)_h has the form $C \times x^{\prime} h$, where $x _h$ is *any* nonzero solution:

$$
x _h=e^{\wedge}\{- \text { int } p(t) d t\}, \quad x=C x _h
$$

We will see that the general case can be solved by an algebraic trick that produces a sequence of two integrations.
[2] Example: Diffusion, e.g. of heat.
About this time of year I start to think about summer. I put my rootbeer in a cooler but it still gets warm. Let's model its temperature by an ODE.
$x(t)=$ root beer temperature at time t.
The greater the temperature difference between inside and outside, the faster $x(t)$ changes.

Simplest ("linear") model of this:

$$
x^{\prime}(t)=k\left(T_{\sim} e x t(t)-x(t)\right)
$$

where T_ext(t) is the "external" temperature. Sanity check: When T_ext(t) $>T(t), x^{\prime}(t)>0$ (assuming $k>0$). We get a linear equation:

$$
x^{\prime}-k x=k \text { T_ext }
$$

This is "Newton's law of cooling." k could depend upon t and we would still have a linear equation, but let's suppose that we are not watching the process for so long that the insulation of the cooler starts to break down!

Systems and signals analysis:
The system is the cooler.
The output signal $=$ system response is $x(t)$, the temperature in the cooler.
The input signal is the external temperature T_ext(t).
Note that the right-hand side is k times the input signal, not the input signal itself.

What constitutes the input and output signals is a matter of the interpretation of the equation, not of the equation itself.

Question 4.1: k large means

1. good insulation
2. bad insulation

Blank. don't know.
k is small when the insulation is good, large when it is bad. It's zero when the insulation is perfect. k is a COUPLING CONSTANT When it is zero, the temperature inside the cooler is decoupled from the temperature outside. In the construction industry, a number like k is pasted on windows; it's called the U-value of the window.

Let's take $k=1 / 3$, for example.
Suppose the temperature outside is rising at a constant rate: say

$$
\text { T_ext }=60+6 t \quad \text { (in hours after 10:00) }
$$

and we need an initial condition: let's say $x(0)=32$.
So the IVP is $x^{\prime}+(1 / 3) x=20+2 t, \quad x(0)=32$. (cooler)
This isn't separable: it's something new. We'll describe a method which works for ANY first order linear ODE.
[3] Method: Integrating factors (Euler)
This method is based on the product rule for differentiation:
$(d / d t)(u x)=u x^{\prime}+u^{\prime} x$
For example, suppose we have the equation

$$
t x^{\prime}+2 x=t
$$

(This is not separable; it is linear and in standard form, but not reduced standard form.) Here's a *trick*. Multiply both sides by t :

$$
t \wedge 2 x^{\prime}+2 t x=t \wedge 2
$$

The left hand side is now the derivative of a product:

$$
(d / d t)(t \wedge 2 x)=t \wedge 2
$$

We can solve this by integrating:
so

$$
\begin{aligned}
t^{\wedge} 2 x & =t^{\wedge} 3 / 3+c \\
x & =t / 3+c t^{\wedge}\{-2\}
\end{aligned}
$$

[In the first lecture, I posed this (with a different righthand side) as a flashcard problem, but I did it just after describing the calculation of an integrating factor for a *reduced* equation. The reduced equation is $x^{\prime}+2 x / t=1$, and this has integrating factor $t \wedge 2$. So it was a poorly placed question.]

That was great! The factor t we multiplied by is an "integrating factor." I guessed it here. Often you can. The factor to use in the cooler equation and other equations may not be so obvious. Here's a calculation, for a linear equation in reduced form,

$$
x^{\prime}+p(t) x=q(t)
$$

Multiply both sides by u

$$
u x^{\prime}+p u x=u q
$$

In order for the right hand side to be $(d / d t)(u x)=u x '+u^{\prime} x$, the function u must satisfy the differential equation

$$
\mathrm{u}^{\prime}=\mathrm{p} \mathrm{u}
$$

This is separable, and we'll carry out the separation in general in a minute. In the cooler equation, the coefficient $p(t)$ is constant. In that case we have the natural growth equation!

$$
u=e^{\wedge}\{p t\}
$$

(I am choosing a value for the constant of integration, because I need just one integrating factor, any one.)

In the case of the cooler problem, $p=1 / 3$, so we have:
$(d / d t)\left(e^{\wedge}\{t / 3\} x\right)=(20+2 t) e^{\wedge\{t / 3\}}$
Integrate:
$e^{\wedge}\{t / 3\} x=60 e^{\wedge}\{t / 3\}+$ int $2 t e^{\wedge}\{t / 3\} d t$
Um. Parts: \quad int $u d v=u v-$ \int $v d u$

$$
\begin{aligned}
& u=2 t, \quad d v=e^{\wedge}\{t / 3\} d t \\
& d u=2 d t, \quad v=3 e^{\wedge}\{t / 3\} \\
& e^{\wedge}\{t / 3\} x=60 e^{\wedge}\{t / 3\}+6 t e^{\wedge}\{t / 3\}-18 e^{\wedge\{t / 3\}}+c \\
& =(42+6 t) e^{\wedge\{t / 3\}+c}
\end{aligned}
$$

Solve for x :

$$
x=(42+6 t)+c e^{\wedge\{-t / 3\}}
$$

That's the general solution. Remember, you can check it easily.
u is an "integrating factor."
[4] We still should finish the IVP process:

$$
\begin{aligned}
32 & =x(0)=42+c \quad \text { so } c=-10: \\
x & =42+6 t-10 e^{\wedge}\{-t / 3\}
\end{aligned}
$$

We just want one u, not the general u : so the exponent could be any antiderivative of p. In the example, $p=1 / 3$ was constant and we took $u=e^{\wedge\{t / 3\}}$.

Note the structure of the genearal solution:

$$
x=x _p+c u \wedge\{-1\} \quad \text { where }
$$

. x_p is a solution, *any solution*. It's called a PARTICULAR SOLUTION but this is a very poor name, because there is nothing particular about it. I this case we chose one with a pretty simple formula - x_p = 42 + 6t .)
. u is an integrating factor.
Very often x_h approaches zero with time, as this one does. It is then called a TRANSIENT. All solutions come to look more and more alike as time goes on. This is a funnel!

I graphed the solutions $42+6 t$ and x, and some others along with T_ext . If the temperature in the cooler is more than 60 degrees at the start, then it declines at first, crosses the nullcline $x=60+6 t$ where it is momentarily in equilibrium with the outside, and then rises to become asymptotic to 42 + 6t like every other solution.
[5] Let's compute an integrating factor for the general first order linear equation (*) : we are to solve u' = up .

This is a separable equation: $d u / u=p d t$

$$
\ln |u|=\text { int } p d t
$$

The constant of integration is in the indefinite integral.

$$
|u|=e^{\wedge}\{\text { int } p d t\}
$$

Now there is a choice of sign. Pick one and go with it; say

$$
\mathrm{u}=\mathrm{e}^{\wedge}\{\text { int } \mathrm{p} d t\}
$$

That gives you an integrating factor. Any nonzero multiple serves as well.
Note that this is the reciprocal of a solution to the homogeneous equation:

$$
u=x h^{\wedge}\{-1\}
$$

This gets fed into the solution for x :
$x=u \wedge\{-1\}$ int $u q d t$
and the constant of integration in the integral lets us write

$$
x=x _p+c x _h
$$

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

