```
18.03 Class 7, Feb 17, 2010
```

Exponential and Sinusoidal input and output
[1] Sinusoidal functions
[2] Trig sum formula
[3] Integration of complex valued functions
[4] Linear equations with sinusoidal input signal
[5] Complex replacement

```
Euler: Re e^{(a+bi)t} = e^{at} cos(bt)
    Im e^{(a+bi)t} = e^{at} sin(bt)
```


[1] Sinusoids

A "sinusoidal function" $f(t)$ is one whose graph is a (co)sine wave.
I drew a large general sinusoidal function, f(t) .
I drew the graph of cos(theta) ; this is our model example of a sinusoid.
A sinusoidal function is entirely determined by just three measurements, or parameters, which determine it in terms of cos(theta) .

A = Amplitude $=$ height of its maxima $=$ depth of its minima
P = Period = elapsed time till it repeats
(or, in spatial terms, lambda $=$ wavelength $=$ the distance between repeats)
t_0 = Time lag = time of first maximum
$f(t)$ can be written in terms of cosine. Clearly, $f(t)=A \cos (t h e t a)$. To work out how, express theta as a function of t. I started drew a t-axis horizontally and a theta-axis vertically.
When $\mathrm{t}=\mathrm{t} _0$, theta $=0$. When $\mathrm{t}=\mathrm{t} _0+\mathrm{P}$, theta $=2 \mathrm{pi}$.
I marked these data points on all three graphs.
The graph of theta as a function of t is a straight line; otherwise the cosine would get distorted, bunched up. So:

$$
\text { theta }=(2 \mathrm{pi} / \mathrm{P})(\mathrm{t}-\mathrm{t}-0)
$$

and so $f(t)=A \cos \left((2 p i / P)\left(t-t _0\right)\right)$
The frequency is $n u=1 / P$, measured in "cycles/unit time." More useful is: the circular frequency omega = 2pi/P = omega , measured in radians/unit time.

So theta $=$ omega ($\mathrm{t}-\mathrm{t}$-0)
The "phase lag" is
phi = omega t_0 = (2 pi/P) t_0 .

It measures the radian measure corresponding to $\mathrm{t}=0$.
In terms of omega and phi ,

$$
f(t)=A \cos (\text { omega } t-p h i)
$$

For example,

```
sin(omega t) = cos(omega t - pi/2).
```

-- the sine lags one quarter cycle behind the cosine.

Question 7.1. A graph of a sinusoidal function is displayed. The problem is to express it in the "standard form" above.

1. $2 \cos (4 \mathrm{pi} \mathrm{t}+\mathrm{pi} / 4)$
2. $2 \cos ((p i / 4) t+p i / 4)$
3. $2 \cos (4 \mathrm{pi} t-p i / 4)$
4. $2 \cos ((\mathrm{pi} / 4) \mathrm{t}-\mathrm{pi} / 4)$
5. $2 \cos (4 t+1)$
6. $2 \cos (4 t-1)$

$$
\begin{aligned}
& P=8, t _0=-1, A=2: \\
& f(t)=2 \cos ((2 p i / 8)(t+1))=2 \cos ((p i / 4) t+p i / 4) \\
& \text { omega }=p i / 4, \quad p h i=-p i / 4 .
\end{aligned}
$$

Ans: 2.
[2] Trig sum: $a \cos (o m e g a ~ t)+b \sin (o m e g a t)$
I showed the Trig Id applet. This sum seems always to be another sinusoidal function! How can we find its "standard form" A cos(omega t - phi) ?

Recall the cosine difference identity:

```
    cos(theta - phi) = cos(phi) cos(theta) + sin(phi) sin(theta)
    cos(omega t - phi) = cos(phi) cos(omega t) + sin(phi) sin(omega t)
```

Now construct a right triangle with hypotenuse the segment in the plane joining (0,0) to (a,b). If A is the hypotenuse and phi the angle at the origin, then

```
A = sqrt(a^2 + b^2)
a = A cos(phi)
b = A sin(phi)
```

and

```
A cos(omega t - phi) = a cos(omega t) + b sin(omega t)
```

Question 7.2. What are the amplitude, circular frequency, and phase lag: A, omega, and phi in A cos(omega t - phi), for the sinusoid

```
    cos(omega t) + sqrt(3) sin(omega t)
```

1. $2 \cos (\backslash o m e g a t-\backslash f r a c\{\backslash p i\}\{4\})$
2. sqrt(3) cos(omega (t - pi/3))
3. $2 \cos (o m e g a(t-p i / 3))$
4. $2 \cos (o m e g a t-p i / 3)$
5. sqrt(3) cos(omega t - pi/3)
6. sqrt(3) cos(omega $t-p i / 4)$
Blank. Don't know.

Ans: $A=2, \quad \mathrm{phi}=\mathrm{pi} / 3: 4$.

[3] Integration

Remember how to integrate $e^{\wedge}\{2 t\} \cos (t)$?
Use parts twice. Or:
Differentiating a complex valued function is done separately on the real and imaginary parts. Same for integrating.

```
\(e^{\wedge}\{2 t\} \cos (t)=\operatorname{Re} e^{\wedge}\{(2+i) t\} \quad\) so
int \(e^{\wedge}\{2 t\} \cos (t) d t=\operatorname{Re}\) int \(e^{\wedge}\{(2+i) t\} d t\)
```

and we can integrate exponentials because we know how to differentiate them! -

```
int e^{(2+i)t} dt = (1/(2+i)) e^{(2+i)t} + c
```

We need the real part.
Expand everything out: $1 /(2+i)=(2-i) / 5$

$$
e^{\wedge}\{(2+i) t\}=e^{\wedge}\{2 t\}(\cos (t)+i \sin (t))
$$

so the real part of the product is
$(1 / 5) e^{\wedge}\{2 t\}(2 \cos (t)+\sin (t))+c$
More direct than the high school method!
[4] Linear constant coefficient ODEs with exponential input signal
Let's try $\quad x^{\prime}+2 x=4 e^{\wedge}\{3 t\}$
We could use our integrating factor, but instead
let's use the method of "optimism," or the inspired guess. The inspiration here is based on the fact that differentiation reproduces exponentials:
d
$-e^{\wedge}\{r t\}=r e^{\wedge\{r t\}}$
dt
Since the right hand side is an exponential, maybe the output signal x

solution, so I'll write $\mathrm{x} _\mathrm{p}$ for it. I don't know what A is yet, but:

$$
\begin{aligned}
2 x _p & =2 A e^{\wedge}\{3 t\} \\
x _p^{\prime} & =A 3 e^{\wedge}\{3 t\}
\end{aligned}
$$

$4 e^{\wedge}\{3 t\}=A(3+2) e^{\wedge}\{3 t\}$
which is $O K$ as long as $A=4 / 5: \quad x _p=(4 / 5) e^{\wedge\{3 t\}}$ is one solution. The general solution is this plus a transient:

$$
x=(4 / 5) e^{\wedge}\{3 t\}+c e^{\wedge\{-2 t\} .}
$$

[6] Replacing sinusoidal signals with exponential ones
Let'e go back to the original ODE

$$
x^{\prime}+2 x=2 \cos (t)
$$

This equation is the real part of a complex valued ODE:

$$
z^{\prime}+2 z=2 e^{\wedge\{i t\}}
$$

This is a different ODE, and I use a different variable name, $z(t)$. We just saw how to get an exponential solution: $\quad z_{-} p=A e^{\wedge\{i t\}}$

$$
\begin{aligned}
2 \mathrm{zp} & =2 A e^{\wedge}\{i t\} \\
z p^{\prime} & =i A e^{\wedge}\{i t\}
\end{aligned}
$$

$2 e^{\wedge}\{i t\}=A(2+i) e^{\wedge}\{i t\}$
so $\quad z _p=2 /(i+2) e^{\wedge\{i t\}}$
To get a solution to the original equation we should take the real part of this! Expand each factor in real and imaginary parts:

$$
\begin{aligned}
z _p & =(2(2-i) / 5)(\cos (t)+i \sin (t)) \\
x _p=\operatorname{Re}\left(z _p\right) & =(4 / 5) \cos (t)+(2 / 5) \sin (t)
\end{aligned}
$$

This is the only sinusoidal solution. To get the general solution we add a transient:

$$
x=x _p+c \quad x _h
$$

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

