
18.03 Class 11, Feb 26, 2010
 
Second order linear equations: 
Physical model, solutions in homogeneous case.  
Characteristic polynomial, distinct real roots. 
 
[1] Springs and masses 
[2] Dashpots 
[3] Second order linear equations 
[4] Solutions in homogeneous case: Superposition I 
[5] Exponential solutions: characteristic polynomial 
 
 
[1]  Second order equations are the basis of analysis of mechanical 
and electrical systems. We'll build this up slowly. 
 
A spring is attached to a wall and a cart: 
 
 
      spring      mass           
 
                   | 
||                 |------->  F_ext               
||                 |     
||              ___|___  
||             |       | 
||---VVVVVVV---|       | 
||             |_______|     
||               O | O       
||                 |         
                   |------->  
                   |   x 
 
 
Set up the coordinate system so that at  x = 0  the spring is relaxed, 
which means that it is exerting no force. 
 
In addition to the spring, suppose that there is another force acting 
on the cart -- an "external force," maybe wind blowing on a sail attached  
to it, maybe gravity, or some other force. Then 
 
      mx"  =  F_spr + F_ext 
 
The spring force is characterized by the fact that it depends only on  
position. In fact: 
 
      If  x > 0  ,  F_spr(x) < 0 
      If  x = 0  ,  F_spr(x) = 0 
      If  x < 0  ,  F_spr(x) > 0 
 
I sketched a graph of  F_spr(x)  as a function of  x .  
The simplest way to model this behavior (and one which is valid in general 
for small  x ,  by the tangent line approximation) is   
 
      F_spr(x)  =  -kx     k > 0  the "spring constant."     "Hooke's Law" 
 
This is another example of the linear approximation that Linn was 



discussing on Monday.  So we get 
 
     mx" + kx = F_ext . 
 
I displayed a weight on a rubber band. This is not a spring, as you 
usually think of one, but it behaves like one, at least in a range. 
Lay a rubber band laid out on a table. Fix the right end of it and set  x = 0 
where the left end is in a relaxed state, then the graph of the force 
exerted by the rubber band looks something like this ... 
 
 
              | 
              | 
              ||                 .------- fastened here 
              ||                 | 
              || linear spring   |    
              ||       |         |     
              ||       |         |         .---- end of unstretched band 
              | \      |         |         | 
              |  \  /__/         |         | 
              |   \ \            V         V 
              |    \ 
              |     \            *=========* 
              |      \     
______________|       \__________.__________         ________________ 
                                            \       | 
                                             \      | 
                                              \     |  
                          linear spring -----> \    | 
                                                \   | 
                                                 \  | 
                                                  \ | 
                                                   || 
                                                   || 
                                                   ||  
                                                   || 
                                                   || 
                                                    | 
                                                    | 
                                                    | 
                                                    | 
 
                                                    ^ 
                                                    | 
                                                    | 
                       the rubber band breaks! ----- 
 
 
[2]  Any real mechanical system has friction. Friction takes many forms.  
It is characterized by the fact that it depends on the motion of the mass. 
We will suppose that it depends only on the velocity of the mass and 
not on its position. Often the damping is controlled by a "dashpot." 
This is a cylinder filled with oil, that a piston moves through. 
Door dampers and car shock absorbers often actually work this way. 
Write  F_dash(x').   
 
It acts against the velocity: 



 
      If  x' > 0 ,  F_Dash(x') < 0 
      If  x' = 0 ,  F_Dash(x') = 0 
      If  x' < 0 ,  F_Dash(x') > 0 
 
The simplest way to model this behavior (and one which is valid in general 
for small  x' ,  by the tangent line approximation) is   
 
      F_fric(x)  =  -bx    b > 0  the "damping constant." 
 
This is "linear damping."  Altogether the equation is  
 
      mx" + bx' + kx  =  F_ext 
 
Diagrammatically:  
 
 
      spring      mass          dashpot 
 
                   | 
||                 |------->  F_ext              || 
||                 |                             ||  
||              ___|___     _____________        || 
||             |       |       _____     |       || 
||---VVVVVVV---|       |------|_____|    |-------|| 
||             |_______|    _____________|       || 
||               O | O                           || 
||                 |                             || 
                   |------->  
                   |   x 
 
 
[3]  A linear differential equation is one of the following  form: 
 
      a_n x^(n) + a_{n-1} x^(n-1) + ... + a_1 x' + a_0 = q(t) 
 
(no constant term on the left hand side!) The a_k's are the "coefficients." 
They may depend upon  t  (but not on  x ). If  a_n  is not zero, this is 
"of order n." 
 
Our spring system is an example of a *second order* linear equation.  
(Two springs in series will give a fourth order equation.)  
 
The left hand side represents the SYSTEM, the spring/mass/dashpot system. 
The right hand side encodes the INPUT SIGNAL, an external force at work. 
The coefficients represent parameters of the system -- for example, 
mass, damping constant, spring constant. In general they may  
depend upon time: maybe the force is actually a rocket, and the fuel burns 
so  m  decreases.  Maybe the spring gets softer as it ages. Maybe the  
honey in the dashpot gets stiffer with time.  
 
Most of the time we will assume that the coefficients  
are CONSTANT: the timescale of their variation is much longer than 
the timescale of the dynamical variable  x . 
But the external force  F_ext(t)  can certainly vary (maybe sinusoidally). 
 
We can see physically that there are many solutions with fixed  



initial value of  x ,  x(t_0) = x_0 .  So many different solution 
curves of a second order equation pass through a given point.  
But, also on physical grounds, the initial position together with 
the initial vecocity determine the solution: "initial position" data 
for a second order equation consist of both position and velocity 
at a give instant. This is a version of the existence/uniqueness theorem. 
In an  n-th order equation, you need to know  n  numbers:  
x(t_0), x'(t_0), ... x^(n-1)(t_0) . 
 
 
[4]  We'll begin with  F_ext = 0 : the system is allowed to  
evolve on its own, without outside interference.  
 
     mx" + bx' + kx  =  0      ,   m  nonzero    (*) 
 
Think of a saloon door swinging. This is a *homogeneous* equation. 
 
 
Special case (from recitation): the harmonic oscillator: b = 0, k > 0 : 
 
     x" + (k/m) x = 0 
 
Solutions come from simple facts about sines and cosines: 
 
      cos(omega t) ---> - omega sin(omega t) ---> - omega^2 cos(omega t) 
      sin(omega t) --->   omega cos(omega t) ---> - omega^2 sin(omega t) 
 
So if  omega^2 = k/m , so that our equation is   x" + omega^2 x = 0 , 
 
then      x = cos(omega t)    and    x = sin(omega t)    are solutions: 
 
ANOTHER FUNDAMENTAL FACT TO MEMORIZE! 
 
In fact, you showed that any sinusoid of circular frequency  omega, 
 
     x = a cos(omega t) + b sin(omega t) = A cos(omega t - phi)     (*) 
 
is also a solution. In fact these are the only solutions, because 
 
     x(0)  = a 
  
     x'(0) = omega b 
 
and so you can solve (uniquely) for  a  and  b  to give any desired 
initial condition: you don't need more.  
 
 
Q11.1.  What is the period of a nonzero solution of  x" + 4x = 0 ? 
 
1. Depends upon the solution 
2. 2 
3. pi 
4. 4 
5. 2pi 
6. pi/2 
Blank. Don't know. 
 



Ans: : think of what t has to do to take  (2t)  from  0  to  2pi. 
Or use  P = 2pi/omega, with  omega = 2 .  Ans: 3: pi. 
 
 
The fact that  cos(omega t)  and  sin(omega t)  are solutions implies that 
(*)  is also a solution, via  
 
Superposition I:  If  x_1  and  x_2  are two solutions of the homogeneous 
linear equation, then so is  
   
                x =  c_1 x_1 + c_2 x_2 
 
Check (in second order case  mx" + bx' + kx = 0 ):    
 
     m(c_1x_1 + c_2x_2)" + b(c_1x_1 + c_2x_2) + k(c_1x_1 + c_2x_2)  
 
    = m(c_1x_1" + c_2x_2") + b(c_1x_1' + c_2x_2') + k(c_1x_1 + c_2x_2)  
 
    = c_1(mx_1" + bx_1' + kx_1) + c_2(mx_2" + bx_2' + kx_2) 
 
    = c_1    (   0   )          + c_2   (    0    )  = 0 . 
 
 
[5] The equation   mx" + bx' + kx = 0 , for  m, b, k  constant, 
is a lot like   x' + kx = 0 , which has as solution  x = e^{-kt} 
(and more generally multiples of this).  It makes sense to try for  
exponential solutions of (*):   e^{rt}  for some as yet undetermined  
constant  and   r . 
 
To see which  r  might work, plug   x = e^{rt}  into (*).  Organize the 
calculation:  the  k] , b] , m]  are flags indicating that I should  
multiply the corresponding line by this number. 
 
      k ]             x   =  c     e^{rt} 
      b ]             x'  =  c r   e^{rt} 
      m ]             x"  =  c r^2 e^{rt} 
                    ___________________  
  
    0  =  mx" + bx' + kx  =  c ( mr^2 + br + k ) e^{rt}  
 
An exponential is never zero, so we can cancel to see that  c e^{rt}  is a  
solution to (*)  for any  c  exactly when  r  is a root of the  
"characteristic polynomial" 
 
      p(s)  =  ms^2 + bs + k 
 
 
Example.  x" + 5x' + 4x  =  0  
 
The characteristic polynomial  s^2 + 5s + 4 . We want the roots. One reason 
I wanted to write out the polynomial was to remember that you can find  
roots by factoring it. This one factors as  (s + 1)(s + 4)   
so the roots are  r = -1  and  r = -4 . The corresponding exponential  
solutions are  e^{-t}  and  e^{-4t} .   
 
By superposition, the "linear combination" 
 



      x(t) = c_1 e^{-t} + c_2 e^{-4t}   
  
is a solution as well. This is the general solution.  
 
Suppose we know also that  x(0) = 2  and  x'(0) = - 5 .  To use the second 
condition we'll need to know  
 
      x(t) = - c_1 e^{-t} - 4 c_2 e^{-4t}   
 
Then 
 
         2 =   c_1 +   c_2  
       - 5 = - c_1 - 4 c_2 
       ------------------- 
       -3  =       - 3 c_2        so  c_2 = 1  and then  c_1 = 1: 
 
       x(t) = e^{-t} + e^{-4t}  
 
      
General picture:  A linear equation of degree  n  
 
     a_n x^(n) + ... + a_1 x' + a_0 x = q(t) 
 
with constant coefficients has a characteristic polynomial,   
 
     p(s) = a_n s^n + ... + a_1 s + a_0  
 
e^{rt}  is a solution if and only if  r  is a root of  p(s) :  p(r) = 0 . 
 
By superposition, any linear combination of these exponentials is also a 
solution. 
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