
 
18.03 Class 12, March 1, 2010 
 
Good Vibrations 
 
[0] Summary table [on the blackboard] 
[1] Overdamping 
[2] Underdamping 
[3] Real solution theorem 
[4] Natural and damped circular frequencies 
[5] Critical damping 
[6] Transience 
[7] Root diagram 
 
 
[0] Summary table of unforced system responses.  
 
Name*     m,b,k relation    Char. roots        Exp. sol's     Basic real solns 
 
Overdamped    b^2/4m > k   Two diff. real    e^{r1 t}, e^{r2 t}      same  
                           roots, r1, r2 
 
Critically    b^2/4m = k   Repeated root        e^{rt}          e^{rt}, te^{rt} 
damped                      r = - b/2m 
 
Underdamped   b^2/4m < k   -b/2m +- iw   e^{r1 t}, e^{r2 t}  e^{-bt/2m}cos(w t) 
                                                             e^{-bt/2m}sin(w t) 
                ( w = omega_d = sqrt{ (k/m) - (b/2m)^2 } ) 
 
 
* The names here are appropriate under the assumption that  b  and  k  are  
both non-negative. The rest of the table makes sense in general, but it  
doesn't have a good interpretation in terms of a mechanical system. 
 
 
We are studying equations of the form  
 
      mx" + bx' + kx  =  0     (*) 
 
which model a mass, dashpot, spring system without external forcing term. 
Homogeneous constant coefficient linear second order.  
 
We found that  (*)  has an exponential solution  e^{rt}  exactly when  
r  is a root of the "characteristic polynomial"  p(s)  =  ms^2 + bs + k . 
These are called the  MODES  of the system. 
 
 
[1] Example. [Overdamped: Distinct real roots]  x" + 5x' + 4x = 0 .   
We did this on Friday:  
The characteristic polynomial  s^2 + 5s + 4  factors as  (s + 1)(s + 4)   
so the roots are  r = -1  and  r = -4 . The corresponding exponential  
solutions are  e^{-t}  and  e^{-4t} . These are called *modes* of the 
system. They represent pure states. The general solution is mixture of 
the two states,  x = c_1 e^{-t} + c_2 e^{-4t} .  
 
But where's the vibration?  
 



 
[2] Example. [Underdamped: Nonreal roots]  Make the spring a little stronger 
and the dashpot a little weaker: x" + 4x' + 5x = 0 
 
A good way to find the roots of a quadratic polynomial is to complete the  
square:    
      
      s^2 + 4s + 5 = (s + 2)^2 + 1 . 
 
Setting this equal to zero,  (s + 2)^2 = -1  or   s + 2 = +- i   
or  s = -2 +- i .  So our exponential solutions are 
 
      e^{(-2+i)t} ,  e^{(-2-i)t}  
 
The general solution is a linear combination of these two "basic"  
solutions.  But I guess we were expecting REAL valued solutions.  
 
For this we have: 
 
 
[3] [Slide] Real Solution Theorem:   
If  z  is a complex-valued solution to  mz" + bz' + kz = 0 ,   
where  m ,  b , and  k  are real, then the real and imaginary parts of  z   
are also solutions. 
 
 
Proof:  Write  z = u + iv   and build the table. 
 
      k ]  z   =  u  + iv 
      b ]  z'  =  u' + iv' 
      m ]  z"  =  u" + iv"        
      ___________________ 
 
            0  =  (mu" + bu' + ku) + i(mv" + bv' + kv)  
 
Both things in parentheses are real, so the only way this can happen is for 
both of them to be zero.  
 
In our situation,   
 
e^{(-2+i)t}   has real part        e^{-2t} cos(t)  
              and imaginary part   e^{-2t} sin(t) 
 
so we have those two solutions.  
 
If I had chosen the other exponential solution,  
 
e^{(-2-i)t}   has real part        e^{-2t} cos(-t) = e^{-2t} cos(t)  
              and imaginary part   e^{-2t} sin(-t) = - e^{-2t} sin(t)  
 
(This also follows from the fact that the roots are complex conjugates of each 
other and hence the two exponential functions are too.) 
 
So you get the same (up to sign) basic real solutions using either solution. 
 
Taking linear combinations, we get the 
general solution  



 
      x  =  e^{-2t} ( a cos(t) + b sin(t) ) 
 
         or  A e^{-2t} cos(t - phi) 
 
This is a "damped sinusoid," with "circular pseudo-frequency"  1.  
 
I demonstrated equations like this using the Mathlet Damped Vibration. 
 
In this underdamped case, you should go straight to the answer and 
not pass through the complex exponential, which was just a convenient 
way to find the answer. If the roots are  a +- omega i , the solutions 
are  e^{at} cos(omega t)  and  e^{at} sin(omega t) . 
 
 
[4] Let's get formulas for the roots. The quadratic formula tells you,  
or complete the square: 
 
     0 = s^2 + (b/m) s + k/m = (s + (b/2m))^2 - ((b/2m)^2 - k/m) 
 
So   r = -b/2m +- sqrt{(b/2m)^2 - k/m} . 
 
Note that  sqrt(-d) = i sqrt(d) , so if  (b/2m)^2 < k/m  then the roots are 
 
     r = -b/2m +- omega_d i  ,   omega_d = sqrt(k/m-(b/2m)^2) 
 
It is called the "damped circular frequency" of the system represented by 
mx" + bx' + kx .  
 
 
Example.  [Undamped, special case of Underdamped] 
mx" + kx = 0 ,  k/m > 0 :  no damping : "Harmonic Oscillator." 
 
Roots are  +- omega_n i , omega_n = sqrt{k/m}  so we have exponential solutions 
e^{i omega t}  and  e^{-i omega t}  with real and imaginary parts   
cos(omega_n t)  and  sin(omega_n t) .  This recovers our earlier calculation. 
 
Even if  b  is not zero, sqrt{k/m}  is denoted  omega_n  and called the 
"natural circular frequency of the system. 
 
 
Question 12.1. As  b  increases from b = 0 (while m and k remain fixed)  
what happens to the period of oscillation of nonzero solutions of   
mx" + bx' + kx = 0 ? 
 
1. It stays the same 
 
2. It gets shorter 
 
3. It gets longer 
 
4. It depends on the other parameters 
 
5. It depends on the initial conditions 
 
Blank. Don't know 
 



 
Ans: The quantity inside the square root decreases, so the circular  
frequency decreases and the period increases. As  b  increases towards 
critical damping, the period goes from  2pi/omega_n  to infinity.  
 
 
[5]  In between overdamped and underdamped there is a marginal case, when 
the roots are equal.  
 
Example. [Critically damped]   x" + 4x' + 4 = 0. 
Then  p(s) = (s+2)^2 has  r = -2  as a repeated root. The only 
exponential solution is  e^{-2t} . Another solution, not a constant  
multiple of  e^{-2t}$, is given by  te^{-t} . I will not check this for 
you, you know how to do it: plug in and use the product rule.  
 
So the general solution is   e^{-2t} (a+ct)  in this case. 
 
 
[6] Transience:  If  m, b, and k  are all positive, then every solution  
dies away for large t.  
 
Look at the roots!     r = -b/2m +- sqrt{(b/2m)^2 - k/m} . 
 
In the underdamped case, the amplitude is  e^{-bt/2m} , which dies off.  
In the overdamped case, the square root is smaller than  b/2m , so 
both roots are negative, and all solutions die off.  
In the critically damped case, the root is negative so (even though you 
get to multiply by  t ) all solutions die off. 
 
 
[7]  In the complex plane, the roots look like this: 
 
 
                              | 
      -b/2m + i omega_d       | 
                       *      |       
                              | 
                              | 
     _______________________________________ 
                              | 
                              | 
      -b/2m - i omega_d       |  
                       *      | 
                              | 
                              | 
 
 
 
I used the Damped Vibrations Mathlet to illustrate that as the 
roots move to the left, the solutions decay faster; when they move 
onto  the imaginary axis, there is no damping. If we could envision 
anti-damping, then we really get into Beach Boy territory and the solutions 
grow exponentially in amplitude. 
 
If the roots are pushed towards the real axis (by increasing the spring 
constant, for example, then the frequency decreases; the period increases. 
This can be a bit hard to see on the applet, but we did see it analytically. 



When the two roots coalesce, we have critical damping, and no more vibration. 
In fact no solution crosses the  t  axis more than once. This behavior 
continues when the roots separate on the real axis, in the overdamped 
regime. 
 
 
Muddy cards. 
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