```
18.03 Class 14, March 5, 2010
```

Complex gain

1. Recap
2. Phase lag
3. Driving via the dashpot
4. Complex gain
[1] The story so far: We're studying solutions of linear constant coefficient equations

$$
\begin{equation*}
a \_n x^{\wedge}(n)+\ldots+a \_1 x+a \_0=q(t) \tag{*}
\end{equation*}
$$

A key is the characteristic polynomial

$$
p(s)=a \_n s^{\wedge} n+\ldots+a \_1 s+a \_0
$$

For the homogeneous case,

$$
\mathrm{a} \_\mathrm{n} \mathrm{x}^{\wedge}(\mathrm{n})+\ldots+\mathrm{a} \_1 \mathrm{x}+\mathrm{a} \_0=0 \quad(*) \_\mathrm{h}
$$

we found that the roots of $\mathrm{p}(\mathrm{s})$ give the exponents in exponential solutions, and that the general solution is a linear combination of these or (these times a power of $t$ in case there are repeated roots). Euler's formula shows that

$$
\left|e^{\wedge}\{(a+b i) t\}\right|=e^{\wedge}\{a t\}
$$

so: [Slide]
Transience Theorem:
All homogeneous solutions of (*)_h decay to zero provided that all the roots of $p(s)$ have negative real parts.

In this case the solutions to (*)_h are called "transients," By superposition, all solutions to (*) converge together as $t$ gets large, and we say that the equation is "stable."

If we have a system modeled by a stable equation, and we are only interested in what it looks like after the transients have died down, we can eliminate the initial condition:


So we look for a particular solution x_p . Sinusoidal input signals are of particular importance. Experiments indicate that sinusoidal in gives sinusoidal out. We decide to set our clock so that the input signal is

$$
\text { input }=\mathrm{A} \cos (o m e g a \operatorname{t})
$$

Experiments indicate that the steady state output signal is again sinusoidal, of the same circular frequency:

$$
\text { output }=x=B \cos (\text { omega } t-p h i)
$$

A consequence of linearity of the system is that $B$ is proportional to $A$ :

$$
x=g A \cos (\text { omega } t-p h i)
$$

So there are just two numbers I need to know, in understanding this kind of system:
the "gain" g and
the phase lag phi.

Both of them will depend upon the input circular frequency omega .
[2] Polar treatment of example from Wednesday:

$$
x^{\prime \prime}+x^{\prime}+2 x=\cos (t) \quad p(s)=s^{\wedge} 2+s+2
$$

The default is to regard the right hand side as the input signal, and $x$ as the output. We are looking for the steady state solution. Make the complex replacement:

$$
\begin{array}{ll}
z^{\prime \prime}+z^{\prime}+2 z=e^{\wedge}\{i t\} & p(i)=-1+i+ \\
z \_p=e^{\wedge}\{i t\} /(1+i) & \text { from ERF, [Slide] }
\end{array}
$$

Rectangular solution: $1 /(1+i)=(1-i) / 2$

$$
x \_p=\operatorname{Re}\left(z \_p\right)=(1 / 2) \cos (t)+(1 / 2) \sin (t)
$$

We used the triangle to rewrite this in polar form:

$$
x \_p=(\operatorname{sqrt}(2) / 2) \cos (t-p i / 4)
$$

This expression gives more insight: the amplitude is sqrt(2)/2 $\sim 0.707$ times the amplitude of the input signal - the gain is sqrt(2)/2 - and the steady state system response lags pi/4 radians or $1 / 8$ cycle behind the input signal.

I want to show you how you can get to this information directly, by passing to polar coordinates earlier. So we start from

$$
z \_p=e^{\wedge}\{i t\} / p(i)
$$

and calculate

$$
\begin{aligned}
& p(i)=1+i=\operatorname{sqrt}(2) e^{\wedge}\{i p i / 4) \\
& z \_p=e^{\wedge\{i t\} / p(i)}=(1 / \operatorname{sqrt}(2)) e^{\wedge}\{-i p i / 4) e^{\wedge\{i t\}} \\
& \\
& =(\operatorname{sqrt}(2) / 2) e^{\wedge}\{i(t-p i / 4)\}
\end{aligned}
$$

$$
x \_p=\operatorname{Re}\left(z \_p\right)=(\operatorname{sqrt}(2) / 2) \cos (t-p i / 4)
$$

-- much more efficient.

Question 14.1. In this equation, if $m$ and $k$ are left alone and the damping constant $b$ is increased from 1, the phase lag

1. increases and $I$ can see why from the mathematics
2. increases but I only see this from physical reasoning
3. decreases and I can see why from the mathematics
4. decreases but $I$ only see this from physical reasoning
5. stays the same and $I$ can see why from the mathematics
6. stays the same but $I$ only see this from physical reasoning
7. don't know

Ans: the only effect of $b$ is to produce the imaginary part of $p(i)$.
If it increases, then the argument of the complex number $p(i)$ increases, The argument of $p(i)$ is the phase lag in this example, and that increases.
[The class was on board with this one.]

Question 14.2. In this equation, if $m$ and $k$ are left alone and the damping constant $b$ is increased from 1, the amplitude of the solution

1. increases and I can see why from the mathematics
2. increases but $I$ only see this from physical reasoning
3. decreases and I can see why from the mathematics
4. decreases but I only see this from physical reasoning
5. stays the same and I can see why from the mathematics
6. stays the same but $I$ only see this from physical reasoning
7. don't know

The amplitude of the solution is $1 /|p(i)| . p(i)$ increases if $b$ increases, so 1/|p(i)| decreases.
[This was harder. Both classes discussed it. I think the mistake was forgetting that you *divide* by p(i omega).]
[3] Another way to drive the spring system: though the dashpot:


Now the force on the mass exerted by the dashpot is $b(y-x)^{\prime}$ :

$$
\begin{equation*}
m x^{\prime \prime}+b x^{\prime}+k x=b y^{\prime} \tag{*}
\end{equation*}
$$

Input signal: y
System response: x
Notice! the right hand side is not the input signal; it's not even a multiple of the input signal.

Again let's think about driving this system sinusoidally;

$$
y=A \cos (\text { omega } t)
$$

We know we will analyze this by making a complex replacement. Let's take the next step, push the complex replacement back even farther, and replace the input signal itself with a complex exponential signal:

$$
y \_c x=A e^{\wedge}\{i \text { omega } t\}
$$

Now solve (*) with y_cx in place of $y$ :
$m z^{\prime \prime}+b z^{\prime}+k z=b y \_c x^{\prime}=b A$ i omega $e^{\wedge\{i}$ omega $\left.t\right\}$
ERF $\quad z \_p=b$ A i omega $e^{\wedge\{i}$ omega $\left.t\right\} / p(i$ omega\}
where $p(i$ omega $)=(k-m$ omega^2 $)+b$ i omega
[4] Define the *complex gain* as the complex number you multiply the complex exponential input by in order to get the complex exponential system response:
$z_{-} p=H(o m e g a) y \_c x$
In this case it is
$\mathrm{H}($ omega $)=\mathrm{b} i$ omega / $\mathrm{p}(\mathrm{i}$ omega)
Now, to return to original equation we pass to real parts:

$$
x \_p=\operatorname{Re}\left(H(\text { omega }) e^{\wedge}\{i \text { omega } t\}\right)
$$

Let's compute the real part using the polar approach as in [1].
The following calculation works in general, not just for this particular case.

$$
H(\text { omega })=\mid H(\text { omega }) \mid e^{\wedge\{-i ~ p h i\}}
$$

so - phi is the argument of H (omega). Then

$$
\begin{aligned}
z_{-} p & =A \mid H(\text { omega }) \mid e^{\wedge}\{-i \text { phi }\} e^{\wedge}\{i \text { omega } t\} \\
& =A \mid H(\text { omega }) \mid e^{\wedge}\{i(\text { omega } t-\text { phi })\}
\end{aligned}
$$

Now when I take real parts,

$$
x \_p=A \mid H(\text { omega }) \mid \cos (o m e g a t-p h i)
$$

So: $\mid H($ omega) $\quad$ is the gain of the system

- $\operatorname{Arg}(H(o m e g a))$ is the phase lag of the system.
(and that accounts for my choice to write - phi for Arg(H(omega)).) This last conclusion is not special to this particular system; it is a general fact.

I demonstrated the Mathlet Amplitude and Phase: Second Order II.

MIT OpenCourseWare http://ocw.mit.edu

### 18.03 Differential Equations <br> []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

