18.03 Class 21, March 29

Fourier series II
[1] Review
[2] Square wave
[3] Piecewise continuity
[4] Tricks
[1] Recall from before break: A function $f(t)$ is periodic of period $2 L$ if $f(t+2 L)=f(t)$.

Theorem: Any decent periodic function $f(t)$ of period $2 p i$ has can be written in exactly one way as a *Fourier series*:

$$
\begin{aligned}
f(t)= & a _0 / 2
\end{aligned}+a _1 \cos (t)+a _2 \cos (2 t)+\ldots .
$$

If the need arises, the "Fourier coefficients" can be computed as integrals:

$$
\begin{aligned}
& \mathrm{a}-\mathrm{n}=(1 / \mathrm{pi}) \text { integral_\{-pi\}^\{pi\}} f(t) \cos (n t) d t, \quad n \text { geq } 0 \\
& b _n=(1 / p i) \text { integral_\{-pi\}^\{pi\}} f(t) \sin (n t) d t, n>0
\end{aligned}
$$

[2] Squarewave: A basic example is given by the "standard squarewave," which I denote by $s q(t)$: it has period $2 p i$ and

$$
\begin{aligned}
\mathrm{sq}(\mathrm{t}) & =1 \text { for } 0<t<\mathrm{pi} \\
& =-1 \text { for }-\mathrm{pi}<\mathrm{t}<0 \\
& =0 \text { for } t=0, t=\text { pi }
\end{aligned}
$$

This is a standard building block for all sorts of "on/off" periodic signals.

It's odd, so a_n = integral_\{-¥pi\}^pi odd. even $d t=0$ for all n.
If $f(t)$ is an odd function of period $2 p i$, we can simplify the integral for bn a little bit. The integrand $f(t) \sin (n t)$ is even, so the integral is twice the integral from 0 to pi:
$b n=(2 / p i)$ integral_0^pi $f(t) \sin (n t) d t$
Similarly, if $f(t)$ is even then

$$
\text { an }=(2 / p i) \text { integral_0^pi } f(t) \cos (n t) d t
$$

In our case this is particularly convenient, since sq(t) itself needs different definitions depending on the sign of t. We have:

$$
\begin{aligned}
\mathrm{bn} & =(2 / \mathrm{pi}) \text { integral_0^pi sin(nt) dt } \\
& =(2 / \mathrm{pi})[-\cos (\mathrm{nt}) / \mathrm{n}] _0 \wedge \mathrm{pi} \\
& =(2 / \mathrm{pi} n)[-\cos (\mathrm{n} p \mathrm{pi})-(-1)]
\end{aligned}
$$

$$
=(2 / \mathrm{pi} \mathrm{n})[1-\cos (\mathrm{n} \text { pi) }]
$$

This depends upon n :

n	$\cos (\mathrm{n} \mathrm{pi})$	$1-\cos (\mathrm{n} \mathrm{pi})$
1	-1	2
2	1	0
3	-1	2

and so on. Thus: $b n=0$ for n even
$=4 \mathrm{pi} / \mathrm{n}$ for n odd and
$\mathrm{sq}(\mathrm{t})=(4 / \mathrm{pi})[\sin (\mathrm{t})+(1 / 3) \sin (3 \mathrm{t})+(1 / 5) \sin (5 \mathrm{t})+\ldots]$
This is the Fourier series for the standard squarewave.
I used the Mathlet FourierCoefficients to illustrate this. Actually, I built up the function

$$
(\mathrm{pi} / 4) \operatorname{sq}(\mathrm{t})=\sin (\mathrm{t})+(1 / 3) \sin (3 \mathrm{t})+(1 / 5) \sin (5 \mathrm{t})+\ldots .(* *)
$$

and observed the fit.
[3] What is "decent"?
This is quite amazing: the entire function is recovered from a *discrete* sequence of slider settings. They record the strength of the harmonics above the fundamental tone. The sequence of Fourier coefficients is a "transform" of the function, one which only applies (in this form at least) to periodic functions. We'll see another example of a transform later, the Laplace transform.

Let's be more precise about decency. First, a function is *piecewise continuous* if it is broken into continuous segments and such that at each point $t=a$ of discontinuity,

$$
\begin{aligned}
& f(a-)=\text { lim_\{t }-->a \text { from below\} } f(t) \text { and } \\
& f(a+)=\text { lim_\{t }-->a \text { from above }\} f(t)
\end{aligned}
$$

exist. They exist at points $t=a$ where $f(t)$ is continuous, too, and there they are equal. So $f(t)=1 / t$ is NOT piecewise continuous, but $\mathrm{sq}(\mathrm{t})$ is.

A function is "decent" if it is piecewise continuous and is such that at each point of discontinuity, $t=a$, the value at a is the average of the left and right limits:

$$
f(a)=(1 / 2)(f(a+)+f(a-))
$$

So the square wave is decent, and any continuous function is decent.
Addendum to the theorem:

At points of discontinuity, the Fourier series can't make up its mind, so it converges to the average of $f(a+)$ and $f(a-)$.

For example, evaluate the Fourier series for $s q(t)$ at $t=p i / 2$:

```
    sin( pi/2) = +1
    sin(3pi/2) = -1
    sin(5pi/2) = +1
```

so
$1=(4 / \mathrm{pi})(1-1 / 3+1 / 5-1 / 7+\ldots)$ or
$1-1 / 3+1 / 5-1 / 7+\ldots=\mathrm{pi} / 4$
Did you know this? It's due to Newton and Leibnitz.
[4] Tricks: Any way to get an expression (*) will give the same answer!
Example [trig id]: cos(t - pi/4).
How to write it like (*) ? Well, there's a trig identity we can use:
$a \cos (t)+b \sin (t)=A \cos (t-p h i)$
if (a,b) has polar coord's (A,phi)
$\mathrm{a}=\mathrm{A} \cos (\mathrm{phi}), \quad \mathrm{b}=\mathrm{A} \sin (\mathrm{phi}):$
For us, $A=1$, phi $=$ pi/4, so $a=b=1 / \operatorname{sqrt}(2)$ and
$\cos (t-p i / 4)=(1 / s q r t(2)) \cos (t)+(1 / s q r t(2) \sin (t)$.
That's it: that's the Fourier series. This means $\mathrm{a} 1=\mathrm{b} 1=\operatorname{sqrt}(2)$ and all the others are zero.

Example [linear combinations]:
$1+2 \mathrm{sq}(\mathrm{t})=1+(8 / \mathrm{pi})(\sin (\mathrm{t})+(1 / 3) \sin (3 \mathrm{t})+\ldots)$

Example [shifts]: $f(t)=s q(t+p i / 2)$
$=(1 / 2)(4 / p i)(\sin (t+p i / 2)+(1 / 3) \sin (3(t+p i / 2))+\ldots)$
$\sin (t h e t a+p i / 2)=\cos (t h e t a), \sin (t h e t a-p i / 2)=-\cos (t h e t a)$ so
$f(t)=(4 / p i)(\cos (t)-(1 / 3) \cos (3 t)+(1 / 5) \cos (5 t)-\ldots)$

Example [Stretching]: What about functions of other periods? Suppose $g(x)$ has period 2L.

Building blocks: $\cos (n(p i / L) x)$
and $\sin (n(p i / L) x)$ are periodic of period $2 L$.

Then the Fourier series for $g(x)$ is:

$$
\begin{array}{r}
g(x)=a _0 / 2+a _1 \cos ((p i / L) x)+a _2 \cos ((2 p i / L) x)+\ldots \\
+b _2 \sin ((p i / L) x)+b _2 \sin ((2 p i / L) x)+\ldots
\end{array}
$$

Example: $\mathrm{sq}((\mathrm{pi} / 2) \mathrm{x}$) has period 4 , not $2 \mathrm{pi}: \quad \mathrm{L}=2$. But we can still write (using the *substitution* $t=(p i / 2) x$) :

$$
\text { sq(2pi x) }=(4 / p i)(\sin ((p i / 2) x)+(1 / 3) \sin (3(p i / 2) x)+\ldots)
$$

There are integral formulas as well. [Slide]

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

