18.03 Lecture 26, April 9, 2010

Laplace Transform: definition and basic properties

1. Definition of LT; L[1]
2. Region of convergence
3. Powers
4. Linearity
5. s-shift rule
6. sines and cosines
7. t-domain and s-domain
[1] Laplace Transform
We continue to consider functions $f(t)$ which are zero for $t<0$.
(I may forget to multiply by $u(t)$ now and then.)
The Laplace transform takes a function $f(t)$ (of "time") and uses it to manufacture another function $F(s)$ (where s can be complex). It: [Slide]
(1) makes explicit long term behavior of $f(t)$.
(2) answers the question: if I know $w(t)$, how can I compute $p(s)$?
(3) converts differential equations into algebraic equations.

But we won't see these virtues right away.
Definition: The Laplace transform of $f(t)$ is the improper integral

$$
F(s)=\text { integral_\{0\}^¥infty } e^{\wedge\{-s t\}} f(t) d t
$$

(formula subject to two refinements).
We will often write $f(t)----->F(s)$
and $\quad L[f(t)]=F(s)$
(This notation isn't so good, because there's no room for "s" on the left.)
For each value of $s, F(s)$ is a weighted integral of $f(t)$.
Wnen $s=0$, for example, the Laplace integral is just the integral of $f(t)$. When $s>0$, the values of $f(t)$ for large t are given less weight. Each value of $F(s)$ contains information about the whole of $f(t)$.

Example: $f(t)=1$:

$$
\begin{aligned}
F(s) & =\text { integral_0^infty } e^{\wedge}\{-s t\} d t \\
& =\lim _\{T-->\text { infty }\} e^{\wedge}\{-s t\} /\left.(-s)\right|^{\wedge T _0} \\
& =(-1 / s)\left(\lim _\{T-->\operatorname{infty}\} e^{\wedge}\{-s t\}-1\right) . \\
\text { If } s>0 & e^{\wedge}\{-s t\}-->0 \text { as } T--->\text { infty , and we get } 1 / s .
\end{aligned}
$$

If $s<0, e^{\wedge}\{-s t\}--->$ infty as $T-->$ infty, and the improper integral diverges.

Actually, I'll want s to be a complex number, not just a real number.
 argument shows that the integral converges for $\operatorname{Re}(s)>0$.

So this is our first calculation:
1 has Laplace transform 1/s
[2] For a more general function $f(t)$, the integral will converge for a given value of s provided that $\mid f(t) e^{\wedge\{-s t\} \mid}$ can be integrated. This will happen if
$|f(t)|<\left|e^{\wedge}\{s t\}\right|=e^{\wedge\{(\operatorname{Re} s) t\}}$
at least for t large. So to make the integral converge *somewhere*, we make the assumption that
$f(t)$ is "of exponential order" if there is a constant M such that for large $t,|f(t)|<e^{\wedge\{a t\} .}$

In that case, the integral for $F(s)$ converges for $\operatorname{Re}(s)>=a$.
Eg $e^{\wedge}\left\{t^{\wedge} 2\right\}$ has no Laplace transform.
So in the definition I really meant:
Refinement \#1: "for Re(s) large." -- the "Region of Convergence."
We'll see that the region of convergence contains important information and it's good practice to declare it when you state a Laplace transform:

1 has LT 1/s with region of convergence $\operatorname{Re}(s)>0$.
The expression obtained by means of the integration makes sense everywhere in C except for a few points - like $s=0$ here - and this is how we define the Laplace transform for values of s whose real part is too small. This is called "analytic continuation."
[3] Powers

$$
\begin{aligned}
& L[t \wedge n]=\text { int_0^infty } t \wedge n e^{\wedge}\{-s t\} d t \\
& u=t \wedge n \\
& d u=n t \wedge\{n-1\} d t \quad d v=e^{\wedge}\{-s t\} d t \\
& =t^{\prime} \quad v=(-1 / s) e^{\wedge}\{-s t\} \\
& =n / s L[t \wedge\{n-1\}] .
\end{aligned}
$$

Start with $n=1: L[t]=(1 / s)(1 / s)=1 / s^{\wedge} 2$.

$$
n=2: L\left[t^{\wedge} 2\right]=(2 / s)\left(1 / s^{\wedge} 2\right)=2 / s^{\wedge} 3
$$

$$
\begin{array}{ll}
\mathrm{n}=3: & \mathrm{L}\left[\mathrm{t}^{\wedge} 3\right]=(3 / \mathrm{s})\left(2 / \mathrm{s} \wedge^{\wedge} 3\right)=3!/ \mathrm{s}^{\wedge} 4 \\
\ldots & \mathrm{~L}[\mathrm{t} \wedge \mathrm{n}]=\mathrm{n}!/ \mathrm{s}^{\wedge}\{\mathrm{n}+1\} .
\end{array}
$$

The region of convergence is $\operatorname{Re}(s)>0$.
[4] These first computations can be exploited using general properties of the Laplace Transform. We'll develop quite a few of these rules, and in fact normally you will not be using the integral definition to compute Laplace transforms.

Rule 1 (Linearity): $a f(t)+b g(t)---->a F(s)+b G(s)$.
This is clear from the linearity of the integral.

Question 26.1. What is $L\left[(1+t)^{\wedge} 2\right]$?

1. $\left(1 / s+1 / s^{\wedge} 2\right)^{\wedge} 2=1 / s^{\wedge} 2+2 / s^{\wedge} 3+1 / s^{\wedge} 4$
2. $1 / s+2 / s^{\wedge} 2+2 / s^{\wedge} 3$
3. $(1+t)\left(1 / s+1 / s^{\wedge} 2\right)$
4. Don't know
[5] Rule 2 (s-shift): If z is any complex number,

$$
L\left[e^{\wedge}\{z t\} f(t)\right]=F(s-z) \text { with region of convergence } \operatorname{Re}(s)>\operatorname{Re}(z)
$$

Here's the calculation:

$$
\begin{aligned}
L\left[e^{\wedge}\{z t\} f(t)\right] & =\text { integral_0^infinity } e^{\wedge}\{z t\} f(t) e^{\wedge}\{-s t\} d t \\
& =\text { integral_0^infinity } f(t) e^{\wedge}\{-(s-z) t\} d t \\
& =F(s-z) .
\end{aligned}
$$

Using $f(t)=1$ and our calculation of its Laplace transform we find

$$
\begin{equation*}
\mathrm{L}\left[\mathrm{e}^{\wedge}\{\mathrm{zt}\}\right]=1 /(\mathrm{s}-\mathrm{z}) . \tag{*}
\end{equation*}
$$

[6] As usual we can get sinusoids out from the complex exponential. Using linearity and Euler's identity

$$
\cos (\text { omega } t)=(1 / 2)\left(e^{\wedge}\{i \text { omega } t\}+e^{\wedge}\{-i \text { omega } t\}\right)
$$

we find

$$
\begin{aligned}
\mathrm{L}[\cos (\text { omega } \mathrm{t})] & =(1 / 2)((1 /(\mathrm{s}-i \text { omega })+1 /(s+i \text { omega })) \\
= & \mathrm{s} /\left(\mathrm{s}^{\wedge} 2+\right.\text { omega^2) }
\end{aligned}
$$

Using

$$
\left.\sin (\text { omega } t)=(1 / 2 i)\left(e^{\wedge\{i} \text { omega }\right\}-e^{\wedge}\{-i \text { omega }\}\right)
$$

we find
$\mathrm{L}[\sin ($ omega t$)]=$ omega $/\left(\mathrm{s}^{\wedge} 2+\right.$ omega^2 $)$.
Both are convergent for $\operatorname{Re}(s)>0$, since $+-i$ omega t lie on the imaginary axis.
[7] Two worlds ... [Slide]

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

