18.03 Class 27, April 12, 2010

Laplace Transform II

1. Delta signal
2. t-derivative rule
3. Inverse transform
4. Unit impulse response
5. Partial fractions
6. L[f'_r]

Laplace Transform: $F(s)=$ int_0^\infty $f(t) e^{\wedge}\{-s t\} d t$
We saw that this improper integral may only converge for $\operatorname{Re}(s)>a$, for some a depending upon $f(t)$. The smallest such a gives the "region of convergence."

Computations so far:
L[1] = 1/s
$\mathrm{L}[\mathrm{t} \wedge \mathrm{n}]=\mathrm{n}!/ \mathrm{s}^{\wedge}\{\mathrm{n}+1\}$
$\mathrm{L}[\mathrm{e} \wedge\{r t\}]=1 /(s-r)$
$\mathrm{L}[\cos (\mathrm{t})]=\mathrm{s} /(\mathrm{s} \wedge 2+\operatorname{omega\wedge } 2)$
$\mathrm{L}[\sin (\mathrm{t})]=$ omega $/\left(\mathrm{s}^{\wedge} 2+\right.$ omega^2 $)$

We also have
Rule 1 (Linearity): $a f(t)+b g(t)---->a F(s)+b G(s)$.
Rule 2 (s-shift): $L\left[e^{\wedge}\{r t\} f(t)\right]=F(s-r)$

We could do this by writing it as (1/2)($e^{\wedge}\{(-1+3 i) t\}+e^{\wedge\{(-1-3 i) t\})}$
but it's a bit easier to use the s-shift : cos(3t) ----> s / (s^2 + 9)
so $e^{\wedge}\{-t\} \cos (3 t)--->(s+1) /\left((s+1)^{\wedge} 2+9\right)$
If you like you can "uncomplete the square" and write this as

$$
=(s+1) /\left(s^{\wedge} 2+2 s+10\right)
$$

[1] The delta function: For $b>0$,

$$
L[d e l t a(t-b)]=\text { integral_0^infty delta(t-b) } e^{\wedge}\{-s t\} d t
$$

What could this mean?
If $f(t)$ is continuous at $t=b, d e l t a(t-b) f(t)=f(b)$ delta(t-b) .
or, if $a<b<c$, integral_a^c delta(t-b) f(t) dt = f(b).
In some accounts, this is the DEFINITION of the delta function.
In our situation, you get

$$
\mathrm{L}[\operatorname{delta}(\mathrm{t}-\mathrm{b})]=\mathrm{e}^{\wedge}\{-\mathrm{bs}\}
$$

In this case, the region of convergence is the entire complex plane: the limit you take to get the improper integral is constant as soon as $t>b$.

There is a problem when $b=0$. delta(t) $e^{\wedge}\{-s t\}=\operatorname{delta(t)}$ for any s, but int_0^infty delta(t) dt $=u(i n f t y)-u(0)$ and $u(0)$ is indeterminate.

We want the formula that worked for $b>0$ to work for $b=0$ as well:

$$
\mathrm{L}[\operatorname{delta}(\mathrm{t})]=1
$$

To be sure this happens, we should refine the definition of the LT integral so the lower limit (as well as the upper limit) occurs as a limit:

Refinement \#2:

$$
\begin{gathered}
L[f(t)]=\lim _\{c \text { increasing to infty, a increasing to } 0\} \\
\text { int_a^c } f(t) e^{\wedge}\{-s t\} d t
\end{gathered}
$$

and then we have the new computation

$$
\begin{array}{ll}
\mathrm{L}[\operatorname{delta}(\mathrm{t}-\mathrm{b})]=\mathrm{e}^{\wedge\{-\mathrm{bs}\}} & \begin{array}{l}
\text { for } \mathrm{b} \text { greater or equal to } 0 \\
\\
\\
\text { region of convergence: the whole plane. } .
\end{array}
\end{array}
$$

[2] To use LT in understanding differential equations, we will need:

$$
L\left[f^{\prime}(t)\right]=\text { integral_\{0-\}^infty } f^{\prime}(t) e^{\wedge}\{-s t\} d t
$$

Parts: $u=e^{\wedge\{-s t\}} d u=-s e^{\wedge\{-s t\}} d t$

$$
\begin{aligned}
d v & =f^{\prime}(t) d t \quad v=f(t) \\
& =\left.e^{\wedge}\{-s t\} f(t) \quad\right|_{-}\{0-\}^{\wedge} \text { infty }+s \text { integral } f(t) e^{\wedge}\{-s t\} d t \\
& =s f(s)
\end{aligned}
$$

Now, what is $f^{\prime}(t)$? If $f(t)$ has discontinuities, we must mean the generalized derivative; that's the only way to make the integral of the derivative work right. Even if $f(t)$ has no breaks in its graph for $t>0$, it probably will have one when $t=0$ since we are assuming that $f(0-)=0$ but have not assumed that $f(0+)=0$. We have to expect a discontinuity at $t=0$, and so delta function in $f^{\prime}(t)$ at $t=0$.

```
For example, u(t) = f(t) ------> 1/s
and delta(t) = f'(t) ------> s (1/s) = 1
or t^n = f(t) -----> n!/s^{n+1}
and n t^{n-1} = f'(t) -----> s n!/s^{n+1} = n (n-1)!/s^n
or cos(t) = f(t) ------> s/(s^2+1)
    delta(t) - sin(t) = f'(t) ------> s^2/(s^2+1) = 1 - 1/(s^2+1)
```

[3] In summary the use of Laplace transform in solving initial value problems goes like this:

For this to work we have to recover information about $f(t)$ from $F(s)$. There isn't a formula for $\mathrm{L} \wedge\{-1\} ;$ what one does is look for parts of F(s) in our table of computations. It's an art, like integration. There is no free lunch.

We can't expect to recover $f(t)$ exactly, if $f(t)$ isn't required to be continuous, since $F(s)$ is defined by an integral, which is left unchanged if we alter any individual value of $f(t)$. What we have is:

Theorem: If $f(t)$ and $g(t)$ are generalized functions with the same Laplace transform, then for every a greater or equal to 0 $f(a+)=g(a+), f(a-)=g(a-)$, and any occurrences of delta functions are the same in $f(t)$ as in $g(t)$.

So if $f(t)$ and $g(t)$ are continuous at $t=a$, then $f(a)=g(a)$.
[4] Example: Find the unit impulse response for the operator D + 3I
ie solve $w^{\prime}+3 w=$ delta(t) with rest initial conditions.
Step 1: Apply L : sW + 3W = 1
Step 2: Solve for W : $W=1 /(s+3)$
Step 3: Find $w(t)$ with this as Laplace transform: $e^{\wedge}\{-3 t\}$
or more precisely, $u(t) e^{\wedge}\{-3 t\}$.
Laplace transform is a good way to find unit impulse responses.
"Unit impulse response" = "weight function"

Its Laplace transform is called the "transfer function."
[5] Example: Solve $x^{\prime}+3 x=e^{\wedge\{-t\}, ~ w i t h ~ i n i t i a l ~ c o n d i t i o n ~} x(0+)=0$.
Step 1: Apply $L: s X+3 X=1 /(s+1)$, using linearity, the s-shift rule, and the t-derivative rule.

Step 2: Solve for $X:(s+3) X=1 /(s+1)$
so $\quad x=1 /((s+1)(s+3))$
Step 3: Massage the result into a linear combination of recognizable forms.
Here the technique is:
Partial Fractions: $1 /((s+1)(s+3))=a /(s+1)+b /(s+3)$.
Old method: cross multiply and identify coefficients.
This works fine, but for excitement let me offer:
The Cover-up Method: Step (i) Multiply through by (s+1) :

$$
1 /(s+3)=a+(s+1)(a /(s+3))
$$

Step (ii) Set $s+1=0$, or $s=-1$:

$$
1 /(3-1)=a+0: a=1 / 2
$$

This process "covers up" occurrences of the factor (s+1), and also all unwanted unknown coefficients. The same method gives b :

$$
1 /(-3+1)=0+b: \quad b=-1 / 2
$$

So $\quad X=(1 / 2) /(s+1)-(1 / 2) /(s+3)$
Step 4: Apply $L \wedge\{-1\}:$ we can now recognize both terms:

$$
\left.x=(1 / 2) e^{\wedge}\{-t\}-(1 / 2) e^{\wedge}\{-3 t\} \text {. (times } u(t)\right)
$$

Of course, this is very easy to do by our earlier methods: The ERF gives the first term, the general solution to the homogeneous equation is ce^\{-3t\}, and the transient needed for initial condition $x(0)=0$ is $c=-1 / 2$.
[5] Consider the equation

$$
x^{\prime}+3 x=e^{\wedge}\{-t\}, \quad x(0)=5
$$

Since we have the standing agreement that $x(t)=0$ for $t<0, x(t)$ has a jump, apparently, at $t=0$, and perhaps what is intended is

$$
x^{\prime}+3 x=e^{\wedge}\{-t\} \quad, \quad x(0+)=5
$$

But this equation does not have a solution! Since $x(0-)=0, x^{\prime}$ contains
the singular part 5 delta(t) ; but there's no 5 delta(t) on the right hand side.

What is really intended in a problem like this is, in connection with LT is:

$$
x^{\prime} _r+3 x=e^{\wedge}\{-t\}, \quad x(0+)=0
$$

Just to keep the notation in bounds, let's suppose that $f(t)$ is continuous for $t>0$. Then the only singular part of the generalized derivative occurs at $t=0$:

$$
\left(f^{\prime}\right) _s(t)=f(0+) \text { delta }(t)
$$

The generalized derivative is the sum of this and the ordinary derivative (f')_r(t) . By linearity and our value L[delta(t)] = 1 ,

$$
L\left[f^{\prime}(t)\right]=f(0+)+L\left[f^{\prime} _r(t)\right]
$$

and so

$$
L\left[f^{\prime} _r(t)\right]=s F(s)-f(0+)
$$

This is what you always see in books and most of the time it's what is used in practice. Let's use it:

$$
x^{\prime} _r+3 x=e^{\wedge}\{-t\}
$$

Then $(s X-5)+3 X=1 /(s+1)$

$$
x=1 /(s+1)(s+3)+5 /(s+3)
$$

so we add $L^{\wedge\{-1\}[5 /(s+3)]=5} e^{\wedge\{-3 t\}}$ to the earlier solution -- this corrects the transient.

Current list of Rules:
L is linear: $L(a f+b g)=a F+b G$
s-shift: $\quad e^{\wedge}\{a t\} f(t)---->F(s-a)$
t-derivative: $f^{\prime}(t)---->s f(s)$
$f^{\prime} _r(t)---->s f(s)-f(0+)$ if $f(t)$ has continuous derivative for $t>0$.

Computations:
$\begin{array}{ll}1 & --->1 / s \\ e^{\wedge}\{a s\} & --->1 /(s-a)\end{array}$

```
cos(omega t) ----> s/(s^2+omega^2)
sin(omega t) ----> omega/(s^2+omega^2)
delta(t-a) ----> e^{as}
```

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

