18.03 Class 28, Apr 14, 2010

Laplace Transform III: Second order equations; completing the square.

1. Question period: f^{\prime}, FTC
2. L[f'_r(t)]
3. s-derivative rule
4. Second order equations

Question period:
[1] There were good questions from the class about finding the generalized derivative of
$f(t)=u(t) \cos ($ omega $t)$.
Let's do this again. The graph shows that $f(t)$ is continuous except at $t=0$. The regular part of the derivative is
$f^{\prime} _r(t)=-$ omega $u(t) \sin (o m e g a t)$
and the singular part is
$f^{\prime} _s(t)=\operatorname{delta}(t)$
You can also apply the product rule:

```
f'(t) = - omega u(t) sin(omega t) + delta(t) cos(omega t)
    = - omega u(t) sin(omega t) + delta(t)
since cos(omega 0) = 1.
```

In order for the "fundamental theorem of calculus"
integral_a^c $f^{\prime}(t) d t=f(c)-f(a)$
to be true, you MUST use the generalized derivative.
For example, take $a=-1, b=1, f(t)=u(t)$.
If you say $u^{\prime}(t)=0$, then

$$
\text { integral_a^c u'(t) dt }=0, \quad \text { not } 1
$$

... while
integral_a^c delta(t) $d t=1$
[2] At the end of class on Monday I took a regular function $f(t)$
(with $f(0)=0$ for $t<0$) whose only jump in
value is at $t=0$, and found $L\left[f^{\prime} _r(t)\right]$:
$f^{\prime}(t)=f^{\prime} _r(t)+f^{\prime} _s(t)$

$$
\begin{aligned}
& =f^{\prime} _r(t)+(f(0+)-f(0-)) \text { delta(t) } \\
& =f^{\prime} _r(t)+f(0+) \operatorname{delta}(t)
\end{aligned}
$$

So:

$$
s F(s)=L\left[f^{\prime}(t)\right]=L\left[f^{\prime} _r(t)\right]+f(0+)
$$

or

$$
L\left[f^{\prime} _r(t)\right]=s F(s)-f(0+)
$$

Example: Solve $x^{\prime}+2 x=4 t$ with initial condition $x(0)=1$ using Laplace transform.

Some interpretation is needed: Since we are always assuming $x(0)=0$ for $t<0$, we must mean $x^{\prime}(0+)=0$.

So there is a jump at $t=0$ in the value of $x(t)$. This must produce a delta function in the derivative. Where is it in the equation? Missing! There's no solution to this equation if x^{\prime} is interpreted as the generalized derivative. What is intended is the ordinary derivative:

$$
x^{\prime} _r+2 x=4 t \text { with initial condition } x(0+)=1
$$

Apply LT:

$$
\begin{aligned}
& s X-1+2 X=4 / s^{\wedge} 2 \\
& X=4 / s^{\wedge} 2(s+2)+1 /(s+2)
\end{aligned}
$$

Work on these separately. The first is $L\left[e^{\wedge}\{-2 t\}\right]$.
For the second we need a fancier version of partial fractions:

$$
\begin{aligned}
4 / s^{\wedge} 2(s+2) & =(a s+b) / s^{\wedge} 2+c /(s+2) \\
& =a / s+b / s^{\wedge} 2+c /(s+2)
\end{aligned}
$$

Find b and c by coverup:

$$
\begin{aligned}
& 4 /(s+2)=b+s(\ldots), \text { so with } s=0 \text { you find } b=2 . \\
& 4 / s^{\wedge} 2=(s+2)(\ldots)+c, \text { so with } s=-2 \text { you find } c=1
\end{aligned}
$$

To find a you have to do something different. How about setting $\mathrm{s}=$ anything else, say 1 :

$$
\begin{aligned}
& 4 / 3=a+2+1 / 3 \text { or } a=-1 \\
& 1 / s^{\wedge} 2(s+2)=-1 / s+2 / s^{\wedge} 2+1 /(s+2) \\
& x=-1+2 t+2 e^{\wedge}\{-2 t\}
\end{aligned}
$$

We could have gotten this more easily using undetermined coefficients!
[3] Another rule: The s-derivative rule :

$$
\begin{aligned}
F^{\prime}(s) & =(d / d s) \text { integral_0^infinity } e^{\wedge}\{-s t\} f(t) d t \\
& =\text { integral_0^infinity }\left(-t e^{\wedge}\{-s t\}\right) f(t) d t
\end{aligned}
$$

which is the Laplace transform of - $t \mathrm{f}(\mathrm{t})$. Thus:

$$
L[t f(t)]=-F^{\prime}(s)
$$

Compare this with the t-derivative rule $L\left[f^{\prime}(t)\right]=s \mathrm{~F}(\mathrm{~s})$.
Example: $f(t)=$ sin(omega $t), ~ F(s)=$ omega $/\left(s^{\wedge} 2+o m e g a \wedge 2\right)$.

$$
\mathrm{L}[\mathrm{t} \sin (\mathrm{t})]=-\mathrm{F}^{\prime}(\mathrm{s})=2 \text { omega } \mathrm{s} /\left(\mathrm{s}^{\wedge} 2+\text { omega^2 }\right)^{\wedge} 2
$$

[4] Second order differential equations.
$L\left[f^{\prime \prime}(t)\right]=? \quad$ Let $g(t)=f^{\prime}(t): G(s)=s F(s)$
$L\left[f^{\prime \prime}(t)\right]=L\left[g^{\prime}(t)\right]=s G(s)=s \wedge 2 F(s)$
We will be careful to use this only when $f(0+)=0$, so that $f^{\prime}(t)$ doesn't have a delta function in it; we are not going to differentiate the delta function in this course.

Example: Find the unit impulse response for $\mathrm{D}^{\wedge} 2+2 \mathrm{D}+2 \mathrm{I}$

$$
\begin{aligned}
w^{\prime \prime}+2 W^{\prime}+2 W & =\text { delta(t), rest initial conditions } \\
s^{\wedge} 2 W+2 s W+2 W & =1 \\
W & =1 /\left(s^{\wedge} 2+2 s+2\right)
\end{aligned}
$$

Technique: complete the square:

$$
\begin{array}{r}
W=1 /\left((s+1)^{\wedge} 2+1\right) \\
\sin (t)---->1 /\left(s^{\wedge} 2+1\right)
\end{array}
$$

so by the s-shift rule

$$
e^{\wedge}\{-t\} \sin (t)---->W(s)
$$

and

$$
w(t)=u(t) e^{\wedge}\{-t\} \sin (t)
$$

```
TERMINOLOGY: unit impulse response = weight function
    L[unit impulse response] = transfer function
```

GENERAL FACT: The transfer function of $p(D)$ is $W(s)=1 / p(s)$:

```
    a_n w^(n) + ... + a_0 w = delta(t)
    a_n s^n W + ... + a_0 W = 1
    p(s) W = 1
so
    LT[w] = 1/p(s)
    LT^{-1}[1/p(s)] = w(t)
```

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

