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Laplace Transform IV:  The pole diagram 
 
1. Another example 
2. t-shift rule 
3. Poles 
4. What the pole diagram of  F(s)  says about  f(t)  
 
 
[1]  We saw that if  p(D)w = delta(t) , 
 
i.e.  a_n w^(n) + ... + a_1 w' + a_0 w = delta(t) 
 
with rest initial conditions, then    p(s) W(s) = 1  ,   
 
or      W(s) = 1/p(s) ,   or  w(t) = L^{-1}(1/p(s)) 
 
w(t) = weight function 
W(s) = transfer function 
 
This is another RULE. 
 
 
Other input signals?  
 
     x" + 4x = cos(2t)   rest initial conditions 
 
(No delta functions in this signal, so we know that  x(0+) = 0  and x'(0+) = 0, 
but that will come out automatically.) 
 
     X = W(s) LT[cos(2t)] = 2s/(s^2+4)^2 
 
From our latest addition to the table, we find that  
 
                       x  = u(t) 1/2 t sin(t)  
 
(Resonance!) 
 
 
GENERAL FACT:      p(D) x = f(t)  with rest initial conditions 
 
has Laplace transformed equation  
 
                p(s) X(s) = F(s) 
 
with solution 
 
                     X(s) = W(s) F(s)  
 
In the s-domain, the system response is obtained by multiplying by the 
transfer function! 
 
 
[2] Another rule:  Let  a > 0 and define  
 
         f_a(t) = 0       if  t < a 



                = f(t-a)  if  t > a 
 
(If  f_s(t)  contains  c delta(t) ,  I also want  f_a(t)  to contain 
c delta(t-a) .  So for example  delta_a(t) = delta(t-a) .) 
 
If you know  F(s) , what is the LT of  f_a(t) ?  
 
 integral_{0-}^infty f_a(t) e^{-st} dt = integral_{a-}^\infty f(t-a) e^{-st} dt 
 
Substitution:  u = t-a ,  du = dt ,  
 
          ... = integral_{0-}^\infty f(u) e^{-s(u+a)} du 
 
              = e^{-as} integral_{0-}^infty f(u) e^{-su} du 
 
              = e^{-as} F(s) 
 
So we have the  t-shift rule:  f_a(t) -----> e^{-as} F(s) 
 
Eg  u_a(t) ----> e^{-as}/s     and   delta_a(t) ----> e^{as} , as we know. 
 
 
[3]  F(s)  "essentially" determines  f(t) , but as we have seen the path  
from  F(s)  to  f(t)  can be difficult. But there are certain features  
of  f(t)  which can be EASILY read off from  F(s) .  They have to do with 
the long term behavior of  f(t) .  
 
Typical LTs are  F(s) = 1/s  or   F(s) = 1/(s^2+2s+5) .  
 
F(s)  is complicated because it assigns to each complex number  s  another 
complex number  F(s) .  Let's content ourselves with understanding the 
absolute value of  F(s) :  |F(s)| .  This assigns a real number to each 
complex number.  In 18.02 you learned how to think of functions on the  
plane.  It has a graph which is a surface in 3-space.  
 
For example  |1/s| = 1/|s| = 1/(distance from the origin).  The graph of  
this function is radially symmetric: it is a surface of revolution of one 
branch of the hyperbola  z = 1/x .  It rises towards infinity as  s  goes  
to 0, and falls off to zero as  s  grows large.   
 
The point  s = 0  is called a "pole"  of  F(s) = 1/s .  Its presence, and  
location, is a simple gross feature of  F(s) .  In fact, it's the only 
thing you see from a distance! 
 
How about  F(s) = 1/(s^2+2s+5) ?  The poles occur at the roots of the 
denominator:  s^2+2s+5 = (s+1)^2 + 4  has roots  -1 +- 2i .   
This is a two-ring circus!  
 
And the sum has three poles.  
 
Have you figured out what functions have those two F's as LT's? 
 
     L[1] = 1/s      L[(1/2)e^{-t} sin(2t)] = 1/((s+1)^2 + 4) . 
 
 
Region of convergence again: 
The location of the poles explains the region of convergence.  



 
    F(s) = integral_{0-}^infty e^{-st} f(t) dt 
 
Since  |e^{-st}| depends only on  Re(s) ,  the region of convergence 
will always be to the right of some line  Re(s) = a , or empty, or the 
whole plane. The value of  F(s)  at a pole is infinite; this reflects  
the divergence of the improper integral.  
 
The region of convergence is the half plane to the right of the rightmost 
pole. 
 
 
[4] What the poles of  F(s)  tell us about  f(t) 
 
Knowing where the poles are is  just a small part of knowing the whole  
of F(s), and it doesn't tell you everything about  f(t) .  
 
Two examples: 
 
(1) If  f(t) = 0  for  t > A ,  then the improper integral isn't so improper -  
 
       F(s) = integral_{0-}^A e^{-st} f(t) dt  
 
- so it converges for ALL s :  no poles at all.  
 
(2) e^{-as}  is never zero and has no poles: so the poles of  e^{-as}F(s) 
are the same as the poles of  F(s) :  time translation of  f(t)  doesn't 
affect the pole diagram of  F(s) .  So the pole diagram can't see phase. 
 
 
But the pole diagram does say a lot about the long term behavior of  f(t).  
 
Example 1.  f(t) = sin(2t).  F(s) = 4/(s^2_4)  has poles at  2i  and  -2i. 
Any  f(t)  such that  F(s)  has this pole diagram exhibits (for large  t ) 
(a) oscillation with circular frequency  2 , and 
(b) neither exponential growth nor exponential decay.  
 
[The Laplace transform of  f(t) = t sin(2t) is  4s/((s^2+4)^2) , which has the 
same pole diagram.  This function does grow with  t , but less than  
exponentially.] 
 
Example 2:  f(t) = e^{-t} sin(2t) .  F(s) = 2s/((s+1)^2+4)  has poles at  
-1+2i  and  -1-2i . Any  f(t)  such that  F(s)  has this pole diagram exhibits 
(for large  t ) 
(a) oscillation with circular frequency  2 , and 
(b) exponential decay on the order of  e^{-t} . 
 
Example 3.  f(t) = 1 + e^{-t} sin(2t) .  F(t) = 1 + 2s/((s+1)^2+4) , which has 
poles at  0 , -1+2i, and -1-2i .  Any  f(t)  such that  F(s)  has this pole 
diagram exhibits (for large  t ) 
 
(a) sub-exponential growth/decay, 
i.e. for any  a > 0 ,  e^(-at) < |f(t)| < e^(at) . 
 
(b) oscillation with circular frequency  2  but with amplitude decaying 
like  e^{-t} .  
 



 
The rightmost poles give the dominant information.  
 
A major lesson: if all the poles of  F(s)  have negative real part, 
then the function  f(t)  decays to zero exponentially.  
 
 
The position of the poles of  F(s)  gives detailed information about 
the long-term rate of growth and oscillation of  f(t) ,  information 
which it can be hard to glean from the graph of  f(t) ... all  
exponentials look rather similar ... 
 
So when you solve an ODE using LT, it may be good enough to stop 
with  X(s). Find its poles, and you know what the solution behaves 
like in the long run.  
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