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Laplace Transform V:  Poles and amplitude response 
 
1. Recap on pole diagram 
2. Stability 
3. Exponential signals 
4. Transfer and gain 
5. Fourier and Laplace 
 
 
[1] To recap: The kind of function  F(s)  that arises as a Laplace 
transform can be understood, in broad terms, by giving the set of points 
at which it becomes infinite. This is the "pole diagram." 
 
Examples:   The following  F(s)'s  all have pole diagram  {2i,-2i} 
(a not zero) :  [Slide] 
 
        F(s)                f(t) 
 
        a/(s^2+4)           (a/2) sin(2t) 
        as/(s^2+4)          a cos(2t) 
        e^{-bs}/(s^2+4)      cos_b(2t) 
        1 + a/(s^2+4)       delta(t) + (a/2) sin(2t) 
        4s/(s^2+4)^2        t cos(2t) 
 
and many other examples. All these functions  f(t)  share some common 
features, for sufficiently large  t : 
 
- they oscillate with circular frequency 2 . 
- they may grow or shink, but less than exponentially.  
 
These features are common to all functions  f(t)  such that  F(s)  has 
this pole diagram.  
 
 
Pole diagram  {2i,-2i,1} :  any of the above plus 
(c not zero) 
 
         F(s)               f(t)  
          
         c/(s-1)            c e^t + ... 
         c/(s-1)^2          c t e^t + ... 
 
and many other examples. All these functions  f(t)  share some common  
features, for sufficiently large  t : 
 
- they grow as  t ---> infinity  "like  e^t ." This means that they 
grow faster than  e^{kt}  for any  k < 1,  and slower than  e^{lt}  
for any  l > 1.  
- they oscillate but the oscillations become insignificant relative to 
the size of  f(t)  as  t ---> infinity.  
 
 
The rightmost poles of  F(s)  determine the dominant features of   
f(t)  for large  t. 
 



In particular:  If all poles of  F(s)  have negative real part - are  
to the left of the imaginary axis - then  f(t) ---> 0  as  t ---> infinity. 
 
 
[2] This is a "stability" effect, related to one we have seen before. 
The unit impulse response  w(t)  for  p(D)  
has Laplace transform  W(s) = 1/p(s) .  The poles of  W(s)  are the roots 
of  p(s) .  If all roots have negative real part, then all solutions to 
p(D)x = 0  die off exponentially as  t ---> infinity.  For  t > 0 , 
w(t)  is a solution to  p(D)x = 0 . If all the poles are in the left half 
plane, then not just the unit impulse response but in fact all solutions 
of the homogeneous equation die off: they are *transients.* 
 
 
[3] Exponential signals 
   
The reciprocal of the characteristic polynomial arose long ago, in 
the Exponential response formula:  
 
Exponential response:  p(D) x  =  e^{rt}  has an exponential solution  
 
      x_p  =  W(r) e^{rt} 
 
The transfer function is the Laplace transform of the weight function. 
 
This is just what appeared in our study of Sinusoidal response:  [Slide] 
 
                       p(D)x  =  cos(omega t)  
 
                       p(D)z  =  e^{i omega t} 
 
                         z_p  =  W(i omega) e^{i omega t} 
 
                         x_p  =  Re[ W(i omega) e^{i omega t} ]   
 
                              =  gain(omega) cos(omega t - phi) 
 
where            gain(omega)  =  |W(i omega)| 
                           
                       - phi  =  Arg(W(i omega)) 
 
W(i omega)  is the "complex gain."  (Here we are supposing that the 
input signal, with respect to which we should be measuring the 
gain and the phase lag, is just  cos(omega t).) 
 
The gain is the restriction to the imaginary axis of the magnitude 
of the transfer function. 
 
 
[4]  Here's the vision that unifies most of what we have done in this  
course so far: 
 
You have a system (a black box, with springs and masses and dashpots, 
for example) which you wish to understand.  This means really that you 
want to be able to predict its response to various input signals. 
 
We will only be able to analyze systems which are LINEAR and TIME  



INVARIANT: so (1) superposition holds, and (2) delaying the input signal  
results in delaying the system response without otherwise changing it. 
 
We are especially interested in its periodic response to periodic signals. 
Periodic signals decompose into sinusoidal signals, by Fourier series, 
so it's enough just to study sinusoidal system responses. 
There will be a gain and a phase lag involved. You'll be happy to  
understand the gain, and leave the phase lag for another day. 
 
So hit the system: feed it  delta(t)  as input signal.  
 
What comes out is  w(t). 
 
Apply  L  to  w(t)  to get  W(s) . 
 
Graph  |W(s)| .  This will be a surface lying over the complex plane. 
It probably has some poles. 
 
Restrict  s  to purely imaginary values ,  s = i omega.   This is what is 
needed to study sinusoidal input response: 
 
      p(D) x  =  e^{i omega t}   
 
has exponential solution 
 
      x_p  =  W(i omega) e^{i omega t} 
 
so  |W(i omega)|  is the gain.   
 
The intersection of the graph of  W(s)  with the vertical plane lying over 
the imaginary axis is the amplitude response curve (extended to an even 
function, allowing negative  omega). 
 
Near resonance occurs because  i omega   is getting near to one of the 
poles of  W(s) . 
 
If you increase the damping, the poles move deeper into negative real part 
space, and eventually the two humps in the frequency response curve merge. 
 
If you have a higher order system, you get more poles, and a more  
complicated amplitude response curve.  
 
 
I did not talk about: 
 
[5]  Laplace and Fourier 
 
A period function neither neither grows nor decays as  t ---> infty, 
so we know that its rightmost poles lie in the imaginary axis. 
 
A periodic function of period  2L  has a Fourier series.  
Let's write  omega = 2pi/2L = pi/L. Then the Fourier series has the form 
 
f(t) = a_0/2 + a_1 cos(omega t) + a_2 cos(2 omega t) + ... 
             + b_1 sin(omega t) + b_2 sin(2 omega t) + ... 
 
The poles of  L [ sin(n omega t) ]  and of  L [ cos(n omega t) ]  occur at  



n omega i  and  - n omega i .   
 
So the poles of  u(t)f(t)  occur along the imaginary axis, spaced out 
at multiples of  +- i omega .   
 
 
The location of poles of  F(s)  gives us some intuitive feeling for the 
significance of the  s-domain. If there  are poles to the right of the 
imaginary axis, then the corresponding function of time grows like  e^{at} 
where  a  is the largest real part of any pole. The imaginary part of the 
pole tells us about the circular frequency of (exponentially damped  or 
expanding) oscillations.  
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