18.03 Class 36, May 5, 2010

The matrix exponential: initial value problems.

1. Definition of $e^{\wedge}\{A t\}$
2. Computation of $e^{\wedge}\{A t\}$
3. Uncoupled example
4. Defective example
5. Exponential law
[1] Recall from day one:
(a) $x^{\prime}=r x$ with initial condition $x(0)=1$ has solution $x=e^{\wedge\{r t\} .}$ $x^{\prime}=r x$ with any initial condition has solution $x=e^{\wedge}\{r t\} x(0)$. Later, we decided to *define* $e^{\wedge}\{i t\}$ as the solution to (b) $x^{\prime}=i x$ with initial condition $x(0)=1$.

Following Euler, a solution is given by $\cos \mathrm{t}+\mathrm{i} \sin \mathrm{t}$, so we found that

$$
e^{\wedge}\{i t\}=\cos (t)+i \sin (t)
$$

(c) Now we are studying u' = A u . Let's try to *define*

The solution to $u^{\prime}=A u$ with initial condition $u(0)$ is $u=e^{\wedge\{A t\} u(0) . ~(* *) ~}$

Note that the initial value $u(0)$ is a vector, and $u(t)$ is a vector valued function. So the expression $e^{\wedge\{A t\}}$ must denote a matrix, or rather a matrix valued function.

What could $e^{\wedge\{A t\}}$ be? For a start, what is its first column? Recall that the first column of any matrix B is the product $\mathrm{B}[1 ; 0]$, and [b_1 b_2] [1;0] = b_1 , so combining this with (**) we see:

The first column of $e^{\wedge\{A t\}}$ is the solution to $u^{\prime}=A u$ with $u(0)=[1 ; 0]$.

Similarly,
The second column of $e^{\wedge}\{A t\}$ is the solution to $u^{\prime}=A u$ with $u(0)=[0 ; 1]$.

This is the DEFINITION of $\mathrm{e}^{\wedge\{A t\}}$. It makes (**) true for all $u(0)$, because $e^{\wedge\{A t\}} u(0)$ is a solution (being a linear combination of the columns of $e^{\wedge\{A t\}, ~ w h i c h ~ a r e ~ s o l u t i o n s), ~ a n d ~ w h e n ~} t=0$ we get

$$
e^{\wedge}\{A 0\} u(0)=I u(0)=u(0) .
$$

[2] Computation of $e^{\wedge\{A t\}}$
We need a method for computing it, though. To explore this we'll use the

Example: $A=[11 ; 02]$.
This is upper triangular, so its eigenvalues are given by the diagonal entries: lambda = 1, lambda = 2. The (tr,det) pair lies in the upper right quadrant, below the critical parabola; the phase portrait is an unstable node.

Find eigenvectors:

$$
\begin{aligned}
& \text { lambda_1 }=1: A-I:[01 ; 01][? ; ?]=[0 ; 0]: v_{1}=1=[1 ; 0] \\
& \text { lambda_2 }=2: A-2 I:[-11 ; 00][? ; ?]=[0 ; 0]: v_{-2}=[1 ; 1]
\end{aligned}
$$

Two independent solutions are given by

$$
u_{_} 1=\left[e^{\wedge} t ; 0\right], u_{-} 2=\left[e^{\wedge}\{2 t\} ; e^{\wedge}\{2 t\}\right]
$$

and the general solution is

$$
\mathrm{u}=\mathrm{c} _1\left[\mathrm{e}^{\wedge} \mathrm{t} ; 0\right]+\mathrm{c} _2\left[\mathrm{e}^{\wedge}\{2 \mathrm{t}\} ; \mathrm{e}^{\wedge}\{2 \mathrm{t}\}\right]
$$

We could go ahead and solve for c_1 and c_2 to get solutions with the desired initial conditions. What follows is a clever way to do that.

There is a compact way to write this linear combination: it is

$$
\mathrm{u}=\left[\mathrm{e}^{\wedge} \mathrm{t}, \mathrm{e}^{\wedge}\{2 \mathrm{t}\} ; 0, \mathrm{e}^{\wedge}\{2 \mathrm{t}\}\right]\left[\mathrm{c}_{-} 1 ; \mathrm{c}_{-} 2\right] . \quad(* * *)
$$

This matrix is a "fundamental matrix" for the system: its columns are independent solutions. Such a matrix will be denoted by Phi(t); so here

$$
\operatorname{Phi}(t)=\left[e^{\wedge} t, e^{\left.\wedge\{2 t\} ; 0, e^{\wedge}\{2 t\}\right]}\right.
$$

Phi(t) behaves very much like we want $e^{\wedge}\{A t\}$ to behave; its columns are solutions, even independent ones, and the general solution is given by

$$
\operatorname{Phi}(t)\left[\begin{array}{c}
\text { c_1 } \left.; ~ c _2 ~\right] ~
\end{array}\right.
$$

The matrix exponential $e^{\wedge\{A t\}}$ is a fundamental matrix: it is the fundamental matrix Phi(t) such that Phi(0) = I .

Our Phi(t) does not evaluate this way. To fix this, I claim we should form
Phi(t) Phi(t)^\{-1\}
Explanation: If B is a square matrix, you can ask whether it has an *inverse* matrix, a matrix $\mathrm{B}^{\wedge}\{-1\}$ such that
$B B\{-1\}=I$ and $B^{\wedge}\{-1\} \quad B=I$
(either implies both). The answer, as for numbers, is not always.
It turns out that there is an inverse exactly when $\operatorname{det}(B)$ is not zero.
In the 2×2 case, $B=[a b ; c d]$ and

$$
[\mathrm{ab} ; \mathrm{c} d] \wedge\{-1\}=(1 / \operatorname{det}(A))[d-b ;-c a] .
$$

We can check this:
[a b ; c d] [d -b ; -c a] = [ad-bc 0 ; 0 ad-bc] = (det B) I
Now let's see: each column Phi(t) Phi(0)^\{-1\} is a linear combination of the columns of Phi(t), so it's a solution. What remains is to check the normalization; but Phi(0) Phi(0)^\{-1\} = I .

Conclusion:

$$
e^{\wedge}\{A t\}=\operatorname{Phi}(t) \operatorname{Phi}(0) \wedge\{-1\}
$$

where Phi(t) is ANY fundamental matrix for A.2A

In our example, $\operatorname{Phi}(0)=[11 ; 01], \operatorname{Phi}(0) \wedge\{-1\}=[1-1 ; 01]$, and so

$$
\begin{aligned}
e^{\wedge}\{A t\} & =\left[e^{\wedge} t e^{\wedge\{2 t\}} ; 0 e^{\wedge\{2 t\}}\right][1-1 ; 01] \\
& =\left[e^{\wedge} t, e^{\wedge\{2 t\}}-e^{\wedge} t ; 0, e^{\wedge\{2 t\}}\right] .
\end{aligned}
$$

[3] Uncoupled example: Suppose $A=[$ a 0 ; 0 d] .
The eigenvalues are lambda_1 = a and lambda_2 = d
I can see the eigenvectors: v_1 = [1 ; 0] , v_2 = [0 ; 1] .
Basic solutions are e^\{lambda_1 t\} [1 ; 0] e^\{lambda_2 t\} [0 ; 1]
so Phi(t) = [e^\{lambda_1 t\} 0 ; 0 e^\{lambda_2 t\}]
and this is already normalized: so it is the matrix exponential.
[4] Defective example.
Sometimes the matrix exponential can be a bit unexpected. For example:
$\mathrm{A}=\left[\begin{array}{llll} & 1 & 0 & 0\end{array}\right]$
Then $\operatorname{tr} A=0$ and $\operatorname{det} A=0$, so the only eigenvalue is 0 , with multiplicity 2 . This is not a diagonal matrix, so it is defective, and we could find solutions by the standard method. However, it is also a companion matrix, for the second order equation $x "=0$. Solutions of this are easy! x_1 = 1 , x_2 = t . So basic solutions to
$\mathrm{u}^{\prime}=\mathrm{A} u$
are $u _1=\left[x _1\right.$; $\left.x _1^{\prime}\right]$ = [1 ; 0]
u_2 = [x_2 ; x_2'] = [t ; 1]
Phi(t) = [1 t ; 01]
This satisfies Phi(0) = I , so

```
\(e^{\wedge}\{A t\}=\left[\begin{array}{llll}1 & t & 0 & 1\end{array}\right]\)
```

[5] We can take t to be a specific value, of course: eg $t=1$: $\mathrm{e}^{\wedge}[011 ; 00]=\left[\begin{array}{lllll}1 & 1 & 0 & 1\end{array}\right]$
and this lets us define $e^{\wedge} A$ for any square matrix A.
Then $e^{\wedge 0}=$ I , as you might expect, but watch out:
$e^{\wedge} A e^{\wedge B}=e^{\wedge}\{A+B\} \quad * p r o v i d e d ~ t h a t * \quad A B=B A$
So for example $\left(e^{\wedge A}\right)^{\wedge} n=e^{\wedge}\{n A\}$

MIT OpenCourseWare http://ocw.mit.edu

18.03 Differential Equations
 []

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

