6. Power Series

6A. Power Series Operations

6A-1. Find the radius of convergence for each of the following:
a) $\sum_{0}^{\infty} n x^{n}$
b) $\sum_{0}^{\infty} \frac{x^{2 n}}{n 2^{n}}$
c) $\sum_{1}^{\infty} n!x^{n}$
d) $\sum_{0}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{n}$

6A-2. Starting from the series $\sum_{0}^{\infty} x^{n}=\frac{1}{1-x}$ and $\sum_{0}^{\infty} \frac{x^{n}}{n!}=e^{x}$,
by using operations on series (substitution, addition and multiplication, term-by-term differentiation and integration), find series for each of the following
a) $\frac{1}{(1-x)^{2}}$
b) $x e^{-x^{2}}$
c) $\tan ^{-1} x$
d) $\ln (1+x)$

6A-3. Let $y=\sum_{0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$. Show that
a) y is a solution to the ODE $y^{\prime \prime}-y=0$
b) $y=\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

6A-4. Find the sum of the following power series (using the operations in $6 \mathrm{~A}-2$ as a help):
a) $\sum_{0}^{\infty} x^{3 n+2}$
b) $\sum_{0}^{\infty} \frac{x^{n}}{n+1}$
c) $\sum_{0}^{\infty} n x^{n}$

6B. First-order ODE's

$\mathbf{6 B}-1$. For the nonlinear IVP $y^{\prime}=x+y^{2}, \quad y(0)=1$, find the first four nonzero terms of a series solution $y(x)$ two ways:
a) by setting $y=\sum_{0}^{\infty} a_{n} x^{n}$ and finding in order $a_{0}, a_{1}, a_{2}, \ldots$, using the initial condition and substituting the series into the ODE;
b) by differentiating the ODE repeatedly to obtain $y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots$, and then using Taylor's formula.

6B-2. Solve the following linear IVP by assuming a series solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n},
$$

substituting it into the ODE and determining the a_{n} recursively by the method of undetermined coefficients. Then sum the series to obtain an answer in closed form, if possible (the techniques of 6A-2,4 will help):
a) $y^{\prime}=x+y, \quad y(0)=0$
b) $y^{\prime}=-x y, \quad y(0)=1$
c) $(1-x) y^{\prime}-y=0, \quad y(0)=1$

6C. Solving Second-order ODE's

6C-1. Express each of the following as a power series of the form $\sum_{N}^{\infty} b_{n} x^{n}$. Indicate the value of N, and express b_{n} in terms of a_{n}.
a) $\sum_{1}^{\infty} a_{n} x^{n+3}$
b) $\sum_{0}^{\infty} n(n-1) a_{n} x^{n-2}$
c) $\quad \sum_{1}^{\infty}(n+1) a_{n} x^{n-1}$

6C-2. Find two independent power series solutions $\sum a_{n} x^{n}$ to $y^{\prime \prime}-4 y=0$, by obtaining a recursion formula for the a_{n}.

6C-3. For the ODE $y^{\prime \prime}+2 x y^{\prime}+2 y=0$,
a) find two independent series solutions y_{1} and y_{2};
b) determine their radius of convergence;
c) express the solution satisfying $y(0)=1, y^{\prime}(0)=-1$ in terms of y_{1} and y_{2};
d) express the series in terms of elementary functions (i.e., sum the series to an elementary function).
(One of the two series is easily recognizable; the other can be gotten using the operations on series, or by using the known solution and the method of reduction of order - see Exercises 2B.)

6C-4. Hermite's equation is $y^{\prime \prime}-2 x y^{\prime}+k y=0$. Show that if k is a positive even integer $2 m$, then one of the power series solutions is a polynomial of degree m.

6C-5. Find two independent series solutions in powers of x to the Airy equation: $y^{\prime \prime}=x y$.
Determine their radius of convergence. For each solution, give the first three non-zero terms and the general term.

6C-6. Find two independent power series solutions $\sum a_{n} x^{n}$ to

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0 .
$$

Determine their radius of convergence R. To what extent is R predictable from the original ODE?

6C-7. If the recurrence relation for the a_{n} has three terms instead of just two, it is more difficult to find a formula for the general term of the corresponding series. Give the recurrence relation and the first three nonzero terms of two independent power series solutions to

$$
y^{\prime \prime}+2 y^{\prime}+(x-1) y=0
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03 Differential Equations
 ——

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

