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Response to Discontinuous Input 

We will continue looking at the constant coefficient first order linear DE 
. 
y + ky = q(t). 

It has the integrating factors solution 

y = e−kt ektq(t)dt + c . (1) 

In this note we want to do an example where the input q(t) is discon
tinuous. 

The most basic discontinuous function is the unit-step function at a 
point a, defined by: � 

0 t < a 
ua(t) = (2)

1 t > a. 

(We leave its value at a undefined, though some books give it the value 0 
there, others the value 1 there.) 

Example 1. We’ll look again at Newton’s law of cooling and my root beer 
cooler: . 

y + ky = k f (t), 

where, y(t) is the temperature inside the cooler and f (t) is the temperature 
of the air. It’s a nice, cool morning with constant temperature. Suddenly 
the sun comes out and the air warms up to a higher constant temperature. 
What’s the response of my cooler to this signal? 

We’ll assume the sun comes out at time t = a, my cooler starts at t = 0 
with temperature 0 and (somewhat idealized) the air temperature jumps 
instantly from 0 to 20 at time t = a. So f (t) = 20 ua(t) and our IVP is 

. 
y + ky = k20ua(t), y(0) = 0. 

Solution. For t < a we have the input is 0. Since y(0) = 0, the response is 
y(t) = 0. 

.
For t ≥ a the DE becomes y + ky = 20k with y(a) = 0. The solution 

(which we have found before) is y(t) = 20 + ce−kt. Now we use the initial 
condition y(a) = 0 to the find the value of c. We get c = −20eka, so y(t) = 
20 − 20ekae−kt for t ≥ a. 
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We can now assemble the results for t < a and t ≥ a into one expression; 
for the latter, we also put the exponent into a more suggestive form. 

0 0 < t < a;
input = 20ua(t) −→ response = y(t) = 

20 − 20e−k(t−a) t ≥ a. 
(3) 

Note that the response is just the translation a units to the right of the re
sponse to the unit-step input at 0. 

Our next example continues the temperature model with a different dis
continuous input. In this case, the physical input is an external bath which 
is initially ice-water at 0 degrees, then replaced by water held at a fixed 
temperature for a time interval, then replaced once more by ice-water. To 
model the input we need the unit box function on [a, b]: 

= 
1 a ≤ t ≤ b 

0 ≤ a < b; (4)uab 0 otherwise 

Example 2. Find the response of the system 
. 
y + ky = kq, with IC y(0) = 0 

to input q(t) = 20uab(t).


Solution. There are at least three ways to do this:


a) Express uab as a sum of unit step functions and use (3) together with 
superposition of inputs; 

b) Use the function uab directly in a definite integral expression for the re
sponse; 

c) Find the response in two steps: first use (3) to get the response y(t) for 
the input ua(t); this will be valid up till the point t = b. 

Then, to continue the response for values t > b, evaluate y(b) and find 
the response for t > b to the input 0, with initial condition y(b). 

We will follow (c), leaving the first two as exercises. 

By (3), the response to the input ua(t) is: 

0 0 ≤ t < a 
y(t) = 

20 − 20e−k(t−a) t ≥ a. 
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This is valid up to t = b, since uab(t) = ua(t) for t ≤ b. Evaluating at b, 

y(b) = 20 − 20e−k(b−a). (5) 

.
For t > b we have uab = 0, so the DE is just y + ky = 0. This models 
exponential decay (our most important DE) and we know the solution: 

y(t) = ce−kt . (6) 

We determine c from the initial value (5). Equating the initial values y(b) 
from (5) and (6), we get: 

ce−kb = 20 − 20e−kb+ka 

from which: 
c = 20ekb − 20eka . 

By (6): 
y(t) = 20(ekb − eka)e−kt , t ≥ b. (7) 

After combining exponents in (7) to give an alternative form for the re
sponse we assemble the parts, getting: 

0 0 ≤ t ≤ a 

y(t) = 20 − 20e−k(t−a) a < t < b (8) 

20e−k(t−b) − 20e−k(t−a) t ≥ b. 
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