Response to Discontinuous Input

We will continue looking at the constant coefficient first order linear DE

$$
\dot{y}+k y=q(t) .
$$

It has the integrating factors solution

$$
\begin{equation*}
y=e^{-k t}\left(\int e^{k t} q(t) d t+c\right) . \tag{1}
\end{equation*}
$$

In this note we want to do an example where the input $q(t)$ is discontinuous.

The most basic discontinuous function is the unit-step function at a point a, defined by:

$$
u_{a}(t)= \begin{cases}0 & t<a \tag{2}\\ 1 & t>a .\end{cases}
$$

(We leave its value at a undefined, though some books give it the value 0 there, others the value 1 there.)
Example 1. We'll look again at Newton's law of cooling and my root beer cooler:

$$
\dot{y}+k y=k f(t),
$$

where, $y(t)$ is the temperature inside the cooler and $f(t)$ is the temperature of the air. It's a nice, cool morning with constant temperature. Suddenly the sun comes out and the air warms up to a higher constant temperature. What's the response of my cooler to this signal?

We'll assume the sun comes out at time $t=a$, my cooler starts at $t=0$ with temperature 0 and (somewhat idealized) the air temperature jumps instantly from 0 to 20 at time $t=a$. So $f(t)=20 u_{a}(t)$ and our IVP is

$$
\dot{y}+k y=k 20 u_{a}(t), \quad y(0)=0
$$

Solution. For $t<a$ we have the input is 0 . Since $y(0)=0$, the response is $y(t)=0$.

For $t \geq a$ the DE becomes $\dot{y}+k y=20 k$ with $y(a)=0$. The solution (which we have found before) is $y(t)=20+c e^{-k t}$. Now we use the initial condition $y(a)=0$ to the find the value of c. We get $c=-20 e^{k a}$, so $y(t)=$ $20-20 e^{k a} e^{-k t}$ for $t \geq a$.

We can now assemble the results for $t<a$ and $t \geq a$ into one expression; for the latter, we also put the exponent into a more suggestive form.

$$
\text { input }=20 u_{a}(t) \quad \longrightarrow \quad \text { response }=y(t)= \begin{cases}0 & 0<t<a ; \tag{3}\\ 20-20 e^{-k(t-a)} & t \geq a\end{cases}
$$

Note that the response is just the translation a units to the right of the response to the unit-step input at 0 .

Our next example continues the temperature model with a different discontinuous input. In this case, the physical input is an external bath which is initially ice-water at 0 degrees, then replaced by water held at a fixed temperature for a time interval, then replaced once more by ice-water. To model the input we need the unit box function on $[a, b]$:

$$
u_{a b}=\left\{\begin{array}{ll}
1 & a \leq t \leq b \tag{4}\\
0 & \text { otherwise }
\end{array} \quad 0 \leq a<b ;\right.
$$

Example 2. Find the response of the system

$$
\dot{y}+k y=k q, \quad \text { with IC } y(0)=0
$$

to input $q(t)=20 u_{a b}(t)$.
Solution. There are at least three ways to do this:
a) Express $u_{a b}$ as a sum of unit step functions and use (3) together with superposition of inputs;
b) Use the function $u_{a b}$ directly in a definite integral expression for the response;
c) Find the response in two steps: first use (3) to get the response $y(t)$ for the input $u_{a}(t)$; this will be valid up till the point $t=b$.
Then, to continue the response for values $t>b$, evaluate $y(b)$ and find the response for $t>b$ to the input 0 , with initial condition $y(b)$.

We will follow (c), leaving the first two as exercises.
By (3), the response to the input $u_{a}(t)$ is:

$$
y(t)= \begin{cases}0 & 0 \leq t<a \\ 20-20 e^{-k(t-a)} & t \geq a .\end{cases}
$$

This is valid up to $t=b$, since $u_{a b}(t)=u_{a}(t)$ for $t \leq b$. Evaluating at b,

$$
\begin{equation*}
y(b)=20-20 e^{-k(b-a)} . \tag{5}
\end{equation*}
$$

For $t>b$ we have $u_{a b}=0$, so the DE is just $\dot{y}+k y=0$. This models exponential decay (our most important DE) and we know the solution:

$$
\begin{equation*}
y(t)=c e^{-k t} . \tag{6}
\end{equation*}
$$

We determine c from the initial value (5). Equating the initial values $y(b)$ from (5) and (6), we get:

$$
c e^{-k b}=20-20 e^{-k b+k a}
$$

from which:

$$
c=20 e^{k b}-20 e^{k a} .
$$

By (6):

$$
\begin{equation*}
y(t)=20\left(e^{k b}-e^{k a}\right) e^{-k t}, \quad t \geq b \tag{7}
\end{equation*}
$$

After combining exponents in (7) to give an alternative form for the response we assemble the parts, getting:

$$
y(t)= \begin{cases}0 & 0 \leq t \leq a \tag{8}\\ 20-20 e^{-k(t-a)} & a<t<b \\ 20 e^{-k(t-b)}-20 e^{-k(t-a)} & t \geq b\end{cases}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

