Operators

Operators are to functions as functions are to numbers. An operator takes a function, does something to it, and returns this modified function. There are lots of examples of operators around:
-The shift-by-a operator (where a is a number) takes as input a function $f(t)$ and gives as output the function $f(t-a)$. This operator shifts graphs to the right by a units.
-The multiply-by-h(t) operator (where $h(t)$ is a function) multiplies by $h(t)$: it takes as input the function $f(t)$ and gives as output the function $h(t) f(t)$.

You can go on to invent many other operators. In this course the most important operator is:
-The differentiation operator, which carries a function $f(t)$ to its derivative $f^{\prime}(t)$.

The differentiation operator is usually denoted by the letter D; so $D f(t)$ is the function $f^{\prime}(t)$. D carries f to f^{\prime}. For example, $D t^{3}=3 t^{2}$. This is usually read as " D applied to t^{3}."

The identity operator takes an input function $f(t)$ and returns the same function, $f(t)$; it does nothing, but it still gets a symbol, I: If $=f$.

Operators can be added and multiplied by numbers or more generally by functions. Thus $t D+4 I$ is the operator sending $f(t)$ to $t f^{\prime}(t)+4 f(t)$.

The single most important concept associated with operators is that they can be composed with each other. Composition of two operators in a given order means that the two operators are applied to a function one after the other. For example, D^{2}, the second-derivative operator, means differentiation twice, sending $f(t)$ to $f^{\prime \prime}(t)$. It is in fact the composition of D with itself: $D^{2}=D \cdot D$, so that $D^{2} f=D(D f)=D\left(f^{\prime}\right)=f^{\prime \prime}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

