The Exponential Response Formula: Resonant Case

The starting point for understanding the mathematics of pure resonance is the generalized Exponential Response formula. First recall the simple case of the Exponential Response formula:
A solution to

$$
\begin{equation*}
p(D) x=B e^{a t} \tag{1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
x_{p}=\frac{B e^{a t}}{p(a)} \quad \text { provided that } p(a) \neq 0 . \tag{2}
\end{equation*}
$$

In the session on Exponential Response we also saw the generalization of this formula when $p(a)=0$. Here we will need to use the special case when $p^{\prime}(a) \neq 0$: A solution to equation (1) is given by

$$
\begin{equation*}
x_{p}=\frac{B t e^{a t}}{p^{\prime}(a)} \quad \text { if } p(a)=0 \text { and } p^{\prime}(a) \neq 0 \tag{3}
\end{equation*}
$$

We will call this the Resonant Response Formula.
Let's look at an example of the type we will be using here to study pure resonance.

Example. Find a particular solution to the DE $x^{\prime \prime}+4 x=2 \cos 2 t$.
As usual, we try complex replacement and the ERF: if z_{p} is a solution to the complex $\mathrm{DE} z^{\prime \prime}+4 z=2 e^{2 i t}$, then $x_{p}=\operatorname{Re}\left(z_{p}\right)$ will be a solution to $x^{\prime \prime}+4 x=2 \cos 2 t$. The characteristic polynomial is $p(s)=s^{2}+4$, and $a=2 i$, so that we have $p(a)=0$. But since $p^{\prime}(s)=2 s$, we have $p^{\prime}(a)=$ $p^{\prime}(2 i)=4 i \neq 0$. The resonant case of the ERF thus gives

$$
z_{p}=\frac{2 t e^{2 i t}}{4 i}
$$

Then taking the real part of z_{p} gives us our particular solution

$$
x_{p}=\frac{1}{2} t \sin 2 t .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

