Part I Problems and Solutions

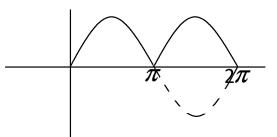
Problem 1: Find the smallest period for each of the following:

- a) $\sin \pi t/3$
- b) $|\sin t|$
- c) $\cos^2 3t$

Solution: For the functions $\sin \omega t$, $\cos \omega t$, the *frequency* is ω , and the frequency and the period are related by (frequency) × (period) = 2π . Applying this gives:

- a) for $\sin \pi t/3$, $\frac{\pi}{3} \cdot P = 2\pi \rightarrow P = 6$.
- b) for $|\sin t|$, the period $P = \pi$.

(Check: $|\sin(t + \pi)| = |-\sin(t)| = |\sin t|$.)



c) for $\cos^2 3t$, note that $\cos 3t$ has period $\frac{2\pi}{3}$. Thus (analogously to $|\sin t|$), $(\cos 3t)^2$ has period $\frac{1}{2}\frac{2\pi}{3} = \frac{\pi}{3}$. (Check: $(\cos 3(t + \frac{\pi}{3}))^2 = (\cos(3t + \pi))^2 = (-\cos(3t))^2 = (\cos(3t))^2$.

Problem 2:

Find the Fourier series of the function f(t) of period 2π which is given over the interval $-\pi < t \le \pi$ by

$$f(t) = \begin{cases} 0, & -\pi < t \le 0\\ 1, & 0 < t \le \pi \end{cases}$$

Solution:

$$a_{n} = \frac{1}{\pi} \int_{0}^{\pi} \cos nt \, dt = \frac{\sin nt}{\pi n} \Big]_{0}^{\pi} = 0$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} dt = 1$$

$$b_{n} = \frac{1}{\pi} \int_{0}^{\pi} \sin nt \, dt = \frac{-\cos nt}{\pi n} \Big]_{0}^{\pi} = \frac{-(-1)^{n} - (-1)}{n\pi}$$

$$= \frac{1 - (-1)^{n}}{n\pi} = \begin{cases} 0 & n \text{ even} \\ \frac{2}{n\pi} & n \text{ odd} \end{cases}$$

$$f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n \text{ odd}} \frac{1}{n} \sin nt = \frac{1}{2} + \frac{2}{\pi} \left(\sin t + \frac{\sin 3t}{3} + \frac{\sin 5t}{5} + \cdots \right)$$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.