Fourier Series for Functions with Period 2L

Suppose that we have a periodic function $f(t)$ with arbitrary period $P=2 L$, generalizing the special case $P=2 \pi$ which we have already seen. Then a simple re-scaling of the interval $(-\pi, \pi)$ to $(-L, L)$ allows us to write down the general Fourier series and Fourier coefficent formulas:

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{\pi}{L} t\right)+b_{n} \sin \left(n \frac{\pi}{L} t\right) \tag{1}
\end{equation*}
$$

with Fourier coefficients given by the general Fourier coefficent formulas

$$
\begin{align*}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(t) d t, \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(n \frac{\pi}{L} t\right) d t, \tag{2}\\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(n \frac{\pi}{L} t\right) d t .
\end{align*}
$$

Note: The number $L=\frac{P}{2}$ is called the half-period.
Example. Let $f(t)$ be the period 2 function, which is defined on the window $[-1,1)$ by $f(t)=|t|$. Compute the Fourier series of $f(t)$.

The graph of $f(t)$ below shows why this function is called either a triangle wave or a continuous sawtooth function.

Figure 1: The period 2 triangle wave.
Solution. In this case the period is $P=2$, so the half-period $L=1$. This means $n \frac{\pi}{L}=n \pi$ and we compute the coefficients from the formulas in (2), using integration by parts, as follows.
For $n \neq 0$:

$$
\begin{aligned}
a_{n} & =\frac{1}{1} \int_{-1}^{1}|t| \cos (n \pi t) d t=2 \int_{0}^{1} t \cos (n \pi t) d t \\
& =2\left(\frac{t \sin (n \pi t)}{n \pi}+\left.\frac{\cos (n \pi t)}{n^{2} \pi^{2}}\right|_{0} ^{1}=\frac{2}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)= \begin{cases}-\frac{4}{n^{2} \pi^{2}} & \text { for } n \text { odd } \\
0 & \text { for } n \text { even }\end{cases} \right.
\end{aligned}
$$

and for $n=0$:
$a_{0}=\frac{1}{1} \int_{-1}^{1}|t| d t=2 \int_{0}^{1} t d t=1$
Since $f(t)$ is an even function and $\sin (n \pi t)$ is odd, the sine coefficients $b_{n}=0$. (We will justify this carefully in the next session. For now you can compute the integrals for b_{n} as an exercise and verify it in this case.)
Thus, the Fourier series for $f(t)$ is
$f(t)=\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos \pi t+\frac{\cos 3 \pi t}{3^{2}}+\frac{\cos 5 \pi t}{5^{2}}+\cdots\right)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{n \text { odd }} \frac{\cos (n \pi t)}{n^{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

